Cell cycle checkpoints underpin virulence of the rice blast fungus, Magnaporthe oryzae

TEM of rice blast fungus Magnaporthe grisea appressorium plus penetration peg.

Novel strategies for diagnosis and treatment of fungal infections

The Aspergillus-specific monoclonal antibody JF5 enables in vivo imaging of invasive pulmonary aspergillosis.

Fungal Biology

Our research focus

There has been a long tradition of fungal biology research at Exeter, and this legacy continues in our Fungal Biology grouping. This multi-disciplinary group comprises internationally renowned scientists with extensive research programmes in plant-fungal interactions, molecular plant pathology, biological control, medical mycology and human disease diagnostics, and modelling of fungal diseases. Our research specialisms include: cellular and molecular biology; molecular genetics; functional genomics; synthetic biology; hybridoma technology and monoclonal antibodies; molecular imaging; fungal virulence and pathogenesis; food security and crop diseases; climate change and global movement of fungal pathogens; fungal biotechnology.

We have strong links with the Plant Biology and Plant-Microbe Interactions research grouping.

Recent research highlights

Cell cycle checkpoints underpin virulence of the rice blast fungus, Magnaporthe oryzae

Research led by Nick Talbot has revealed how two independent cell cycle checkpoints in the fungal pathogen Magnaporthe oryzae are critical for the formation of the appressorium, the specialized infection structure that enables entry of the fungus into host tissue.

Osés-Ruiz M et al. (2017). Proc Natl Acad Sci USA. 114(2):E237-E244.

Studies reveal coordinated fungal cell wall formation

Research led by Gero Steinberg and Sarah Gurr has provided striking new insight into how fungal cell wall formation is coordinated, a process that is critical for polarized fungal growth and invasion of animal and plant hosts. In their studies of Ustilago maydis, they observe that cell wall synthases are co-delivered in transport vesicles and cooperate in cell wall formation following their co-secretion.

Schuster M et al. (2016). Nat Microbiol. 1(11):16149.

A novel role for the fungal cell wall component, chitosan

Research led by Sarah Gurr has revealed a novel role for chitosan, a major component of the fungal cell wall. Challenging long-standing hypotheses, their studies of Magnaporthe oryzae revealed that chitosan is required for the development of the appressorium, a critical fungal infection structure required for the penetration of plant cells.

Geoghegan IA & Gurr SJ. (2016). PLoS Pathog. 12(6):e1005703.

Novel strategies for diagnosis and treatment of fungal infections.

Christopher Thornton, working with a network of European collaborators, has developed a novel immunodiagnostic that allows the noninvasive diagnosis of invasive pulmonary aspergillosis, a life-threatening lung disease caused by Aspergillus fumigatus. This technology has enormous potential to transform the diagnosis and treatment of life-threatening fungal infections.

Rolle AM et al. (2016). Proc Natl Acad Sci USA. 113(8):E1026-33