Publications by year
2014
ROBERTS KE, HUGHES WOH (2014). Horizontal transmission of a parasite is influenced by infected host phenotype and density. Parasitology
Roberts KE, Hughes WOH (2014). Immunosenescence and resistance to parasite infection in the honey bee, Apis mellifera.
Journal of Invertebrate Pathology,
121, 1-6.
Abstract:
Immunosenescence and resistance to parasite infection in the honey bee, Apis mellifera
Immunosenescence, the systemic reduction of immune efficiency with age, is increasingly recognised as having important implications for host-parasite dynamics. Changes in the immune response can impact on the ability of an individual to resist or moderate parasite infection, depending on how and when it encounters a parasite challenge. Using the European honey bee Apis mellifera and its microsporidian parasite Nosema ceranae, we investigated the effects of host age on the ability to resist parasite infection and on baseline immunocompetence, assessed by quantifying constitutive (PO) and potential levels (PPO) of the phenoloxidase immune enzyme as general measures of immune function. There was a significant correlation between the level of general immune function and infection intensity, but not with survival, and changes in immune function with age correlated with the ability of individuals to resist parasite infection. Older individuals had better survival when challenged with a parasite than younger individuals, however they also had more intense infections and lower baseline immunocomptence. The ability of older individuals to have high infection intensities yet live longer, has potential consequences for parasite transmission. The results highlight the need to consider age in host-parasite studies and show the importance of choosing the correct measure when assaying invertebrate immunity. © 2014 Elsevier Inc.
Abstract.
2013
Chappell P, Roberts K, Baer B, Hughes WOH (2013). Mating system and population genetic structure of the bulldog ant Myrmecia pavida (Hymenoptera: Formicidae).
Myrmecological News,
18, 25-32.
Abstract:
Mating system and population genetic structure of the bulldog ant Myrmecia pavida (Hymenoptera: Formicidae)
Understanding the evolution of the alternative mating strategies of monandry and polyandry is a fundamental problem in evolutionary biology because of the cost-benefit trade-offs associated with mating for females. The problem is particularly intriguing in the social insects because queens in most species appear to be obligately monandrous (i.e. only a single male fathers their offspring), while those in a minority of species have evolved high, and sometimes extreme, polyandry. One group which may shed particular insight is the ant subfamily Myrmeciinae (Myrmecia and Nothomyrmecia). Here we examine the population and colony genetic structure of the bulldog ant Myrmecia pavida CLARK, 1951 by geno-typing offspring workers from 45 colonies. We find little evidence of geographic structuring or inbreeding in the population, indicating that the species outbreeds, most probably in mating swarms. We also find that queens of M. pavida show moderately high polyandry, with 84% having mated with between two and seven males, and an overall mean observed mating frequency of 3.8. This is significantly higher than previously reported for queens of Nothomyrmecia macrops, in which most females mate singly. This was similar to that of M. pyriformis, M. brevinoda, and M. pilosula, the three congenerics for which mating frequencies have recently been reported. The two genera in the Myrmeciinae therefore appear to show multiple transitions in mating frequency and further investigation of the subfamily may be highly informative for disentangling the forces driving the evolution of alternative mating strategies.
Abstract.
2012
Boots M, Roberts KE (2012). Maternal effects in disease resistance: poor maternal environment increases offspring resistance to an insect virus.
Proc Biol Sci,
279(1744), 4009-4014.
Abstract:
Maternal effects in disease resistance: poor maternal environment increases offspring resistance to an insect virus.
Maternal effects can be adaptive and because of their intrinsic time delays may have important effects on population dynamics. In vertebrates, and increasingly invertebrates, it is well established that offspring defence is in part determined by maternal parasite exposure. It has also been suggested that there may be indirect maternal effects on immunity mediated by other components of the maternal environment, including density and resource availability. Here, we examine the effect maternal resource availability has on the immunity of offspring in an insect-virus system. We use five different maternal resource levels and examine immunity in the offspring both directly, by challenge with a virus, and by measuring a major component of the immune system, across three offspring environments. Both the direct infection assay and the measure of immunocompetence show clearly that offspring from mothers in poor environments are more resistant to parasites. This may result from life-history optimization of mothers in poor environments, or because the poor environment acts as a cue for higher disease risk in the next generation. This emphasizes the importance of maternal effects on disease resistance, mediated through indirect environmental factors that will have important implications to both the ecological and evolutionary dynamics of host-parasite interactions.
Abstract.
Author URL.
Evison SEF, Roberts KE, Laurenson L, Pietravalle S, Hui J, Biesmeijer JC, Smith JE, Budge G, Hughes WOH (2012). Pervasiveness of parasites in pollinators.
PloS one,
7(1).
Abstract:
Pervasiveness of parasites in pollinators.
Many pollinator populations are declining, with large economic and ecological implications. Parasites are known to be an important factor in the some of the population declines of honey bees and bumblebees, but little is known about the parasites afflicting most other pollinators, or the extent of interspecific transmission or vectoring of parasites. Here we carry out a preliminary screening of pollinators (honey bees, five species of bumblebee, three species of wasp, four species of hoverfly and three genera of other bees) in the UK for parasites. We used molecular methods to screen for six honey bee viruses, Ascosphaera fungi, Microsporidia, and Wolbachia intracellular bacteria. We aimed simply to detect the presence of the parasites, encompassing vectoring as well as actual infections. Many pollinators of all types were positive for Ascosphaera fungi, while Microsporidia were rarer, being most frequently found in bumblebees. We also detected that most pollinators were positive for Wolbachia, most probably indicating infection with this intracellular symbiont, and raising the possibility that it may be an important factor in influencing host sex ratios or fitness in a diversity of pollinators. Importantly, we found that about a third of bumblebees (Bombus pascuorum and Bombus terrestris) and a third of wasps (Vespula vulgaris), as well as all honey bees, were positive for deformed wing virus, but that this virus was not present in other pollinators. Deformed wing virus therefore does not appear to be a general parasite of pollinators, but does interact significantly with at least three species of bumblebee and wasp. Further work is needed to establish the identity of some of the parasites, their spatiotemporal variation, and whether they are infecting the various pollinator species or being vectored. However, these results provide a first insight into the diversity, and potential exchange, of parasites in pollinator communities.
Abstract.