Publications by year
In Press
Buchholz H, Michelsen M, Temperton B, Bolanos L, Allen M (In Press). Efficient Dilution-to-Extinction isolation of novel virus-host model systems for fastidious heterotrophic bacteria. The ISME Journal: multidisciplinary journal of microbial ecology
Bolaños LM, Tait K, Somerfield PJ, Parsons RJ, Giovannoni SJ, Smyth T, Temperton B (In Press). Influence of short and long term processes on SAR11 communities in open ocean and coastal systems.
Abstract:
Influence of short and long term processes on SAR11 communities in open ocean and coastal systems
AbstractSAR11 bacteria dominate the surface ocean and are major players in converting fixed carbon back to atmospheric carbon dioxide. The SAR11 clade is comprised of niche-specialized ecotypes that display distinctive spatiotemporal transitions. We analysed SAR11 ecotype seasonality in two long-term 16S rRNA amplicon time series representing different North Atlantic regimes: the Sargasso Sea (subtropical ocean-gyre; BATS) and the temperate coastal Western English Channel (WEC). Using phylogenetically resolved amplicon sequence variants (ASVs), we evaluated seasonal environmental constraints on SAR11 ecotype periodicity. Despite large differences in temperature and nutrient availability between the two sites, at both SAR11 succession was defined by summer and winter clusters of ASVs. Summer cluster was dominated by ecotype Ia.3 in both sites. Winter clusters were dominated by ecotypes Ib and IIa.A at BATS and Ia.1 and IIa.B at WEC. A two-year weekly analysis within the WEC time series showed that the response of SAR11 communities to short-term environmental fluctuations was variable. In 2016, community shifts were abrupt and synchronised to environmental shifts. However, in 2015, changes were gradual and decoupled from environmental fluctuations, likely due to increased mixing from strong winds. We demonstrate that interannual weather variability disturb the pace of SAR11 seasonal progression.
Abstract.
Kramer SJ, Bolaños LM, Catlett D, Chase AP, Behrenfeld MJ, Boss ES, Crockford ET, Giovannoni SJ, Graff JR, Haëntjens N, et al (In Press). Toward a synthesis of phytoplankton community composition methods for global-scale application.
Abstract:
Toward a synthesis of phytoplankton community composition methods for global-scale application
AbstractThe composition of the marine phytoplankton community has been shown to impact many biogeochemical processes and marine ecosystem services. A variety of methods exist to characterize phytoplankton community composition (PCC), with varying degrees of taxonomic resolution. Accordingly, the resulting PCC determinations are dependent on the method used. Here, we use surface ocean samples collected in the North Atlantic and North Pacific Oceans to compare high performance liquid chromatography (HPLC) pigment-based PCC to four other methods: quantitative cell imaging, flow cytometry, and 16S and 18S rRNA amplicon sequencing. These methods allow characterization of both prokaryotic and eukaryotic PCC across a wide range of size classes. PCC estimates of many taxa resolved at the class level (e.g. diatoms) show strong positive correlations across methods, while other groups (e.g. dinoflagellates) are not well captured by one or more methods. Since variations in phytoplankton pigment concentrations are related to changes in optical properties, this combined dataset expands the potential scope of ocean color remote sensing by associating PCC at the genus- and species-level with group- or class-level PCC from pigments. Quantifying the strengths and limitations of pigment-based PCC methods compared to PCC assessments from amplicon sequencing, imaging, and cytometry methods is the first step toward the robust validation of remote sensing approaches to quantify PCC from space.
Abstract.
2023
Buchholz HH, Bolaños LM, Bell AG, Michelsen ML, Allen MJ, Temperton B (2023). Novel pelagiphage isolate Polarivirus skadi is a polar specialist that dominates SAR11-associated bacteriophage communities at high latitudes.
ISME J,
17(10), 1660-1670.
Abstract:
Novel pelagiphage isolate Polarivirus skadi is a polar specialist that dominates SAR11-associated bacteriophage communities at high latitudes.
The SAR11 clade are the most abundant members of surface marine bacterioplankton and a critical component of global biogeochemical cycles. Similarly, pelagiphages that infect SAR11 are ubiquitous and highly abundant in the oceans. Pelagiphages are predicted to shape SAR11 community structures and increase carbon turnover throughout the oceans. Yet, ecological drivers of host and niche specificity of pelagiphage populations are poorly understood. Here we report the global distribution of a novel pelagiphage called "Polarivirus skadi", which is the sole representative of a novel genus. P. skadi was isolated from the Western English Channel using a cold-water ecotype of SAR11 as bait. P. skadi is closely related to the globally dominant pelagiphage HTVC010P. Along with other HTVC010P-type viruses, P. skadi belongs to a distinct viral family within the order Caudovirales, for which we propose the name Ubiqueviridae. Metagenomic read recruitment identified P. skadi as one of the most abundant pelagiphages on Earth. P. skadi is a polar specialist, replacing HTVC010P at high latitudes. Experimental evaluation of P. skadi host range against cold- and warm-water SAR11 ecotypes supported cold-water specialism. Relative abundance of P. skadi in marine metagenomes correlated negatively with temperature, and positively with nutrients, available oxygen, and chlorophyll concentrations. In contrast, relative abundance of HTVC010P correlated negatively with oxygen and positively with salinity, with no significant correlation to temperature. The majority of other pelagiphages were scarce in most marine provinces, with a few representatives constrained to discrete ecological niches. Our results suggest that pelagiphage populations persist within a global viral seed bank, with environmental parameters and host availability selecting for a few ecotypes that dominate ocean viromes.
Abstract.
Author URL.
2022
Buchholz HH, Bolaños LM, Bell AG, Michelsen ML, Allen MJ, Temperton B (2022). A Novel and Ubiquitous Marine Methylophage Provides Insights into Viral-Host Coevolution and Possible Host-Range Expansion in Streamlined Marine Heterotrophic Bacteria.
Appl Environ Microbiol,
88(7).
Abstract:
A Novel and Ubiquitous Marine Methylophage Provides Insights into Viral-Host Coevolution and Possible Host-Range Expansion in Streamlined Marine Heterotrophic Bacteria.
The methylotrophic OM43 clade are Gammaproteobacteria that comprise some of the smallest free-living cells known and have highly streamlined genomes. OM43 represents an important microbial link between marine primary production and remineralization of carbon back to the atmosphere. Bacteriophages shape microbial communities and are major drivers of mortality and global marine biogeochemistry. Recent cultivation efforts have brought the first viruses infecting members of the OM43 clade into culture. Here, we characterize a novel myophage infecting OM43 called Melnitz. Melnitz was isolated independently from water samples from a subtropical ocean gyre (Sargasso Sea) and temperate coastal (Western English Channel) systems. Metagenomic recruitment from global ocean viromes confirmed that Melnitz is globally ubiquitous, congruent with patterns of host abundance. Bacteria with streamlined genomes such as OM43 and the globally dominant SAR11 clade use riboswitches as an efficient method to regulate metabolism. Melnitz encodes a two-piece tmRNA (ssrA), controlled by a glutamine riboswitch, providing evidence that riboswitch use also occurs for regulation during phage infection of streamlined heterotrophs. Virally encoded tRNAs and ssrA found in Melnitz were phylogenetically more closely related to those found within the alphaproteobacterial SAR11 clade and their associated myophages than those within their gammaproteobacterial hosts. This suggests the possibility of an ancestral host transition event between SAR11 and OM43. Melnitz and a related myophage that infects SAR11 were unable to infect hosts of the SAR11 and OM43, respectively, suggesting host transition rather than a broadening of host range. IMPORTANCE Isolation and cultivation of viruses are the foundations on which the mechanistic understanding of virus-host interactions and parameterization of bioinformatic tools for viral ecology are based. This study isolated and characterized the first myophage known to infect the OM43 clade, expanding our knowledge of this understudied group of microbes. The nearly identical genomes of four strains of Melnitz isolated from different marine provinces and the global abundance estimations from metagenomic data suggest that this viral population is globally ubiquitous. Genome analysis revealed several unusual features in Melnitz and related genomes recovered from viromes, such as a curli operon and virally encoded tmRNA controlled by a glutamine riboswitch, neither of which are found in the host. Further phylogenetic analysis of shared genes indicates that this group of viruses infecting the gammaproteobacterial OM43 shares a recent common ancestor with viruses infecting the abundant alphaproteobacterial SAR11 clade. Host ranges are affected by compatible cell surface receptors, successful circumvention of superinfection exclusion systems, and the presence of required accessory proteins, which typically limits phages to singular narrow groups of closely related bacterial hosts. This study provides intriguing evidence that for streamlined heterotrophic bacteria, virus-host transitioning may not be necessarily restricted to phylogenetically related hosts but is a function of shared physical and biochemical properties of the cell.
Abstract.
Author URL.
Bolaños LM, Tait K, Somerfield PJ, Parsons RJ, Giovannoni SJ, Smyth T, Temperton B (2022). Influence of short and long term processes on SAR11 communities in open ocean and coastal systems.
ISME Communications,
2(1).
Abstract:
Influence of short and long term processes on SAR11 communities in open ocean and coastal systems
AbstractSAR11 bacteria dominate the surface ocean and are major players in converting fixed carbon back to atmospheric carbon dioxide. The SAR11 clade is comprised of niche-specialized ecotypes that display distinctive spatiotemporal transitions. We analyzed SAR11 ecotype seasonality in two long-term 16S rRNA amplicon time series representing different North Atlantic regimes: the Sargasso Sea (subtropical ocean-gyre; BATS) and the temperate coastal Western English Channel (WEC). Using phylogenetically resolved amplicon sequence variants (ASVs), we evaluated seasonal environmental constraints on SAR11 ecotype periodicity. Despite large differences in temperature and nutrient availability between the two sites, at both SAR11 succession was defined by summer and winter clusters of ASVs. The summer cluster was dominated by ecotype Ia.3 in both sites. Winter clusters were dominated by ecotypes Ib and IIa.A at BATS and Ia.1 and IIa.B at WEC. A 2-year weekly analysis within the WEC time series showed that the response of SAR11 communities to short-term environmental fluctuations was variable. In 2016, community shifts were abrupt and synchronized to environmental shifts. However, in 2015, changes were gradual and decoupled from environmental fluctuations, likely due to increased mixing from strong winds. We demonstrate that interannual weather variability disturb the pace of SAR11 seasonal progression.
Abstract.
Liu S, Longnecker K, Kujawinski EB, Vergin K, Bolaños LM, Giovannoni SJ, Parsons R, Opalk K, Halewood E, Hansell DA, et al (2022). Linkages Among Dissolved Organic Matter Export, Dissolved Metabolites, and Associated Microbial Community Structure Response in the Northwestern Sargasso Sea on a Seasonal Scale.
Frontiers in Microbiology,
13Abstract:
Linkages Among Dissolved Organic Matter Export, Dissolved Metabolites, and Associated Microbial Community Structure Response in the Northwestern Sargasso Sea on a Seasonal Scale
Deep convective mixing of dissolved and suspended organic matter from the surface to depth can represent an important export pathway of the biological carbon pump. The seasonally oligotrophic Sargasso Sea experiences annual winter convective mixing to as deep as 300 m, providing a unique model system to examine dissolved organic matter (DOM) export and its subsequent compositional transformation by microbial oxidation. We analyzed biogeochemical and microbial parameters collected from the northwestern Sargasso Sea, including bulk dissolved organic carbon (DOC), total dissolved amino acids (TDAA), dissolved metabolites, bacterial abundance and production, and bacterial community structure, to assess the fate and compositional transformation of DOM by microbes on a seasonal time-scale in 2016–2017. DOM dynamics at the Bermuda Atlantic Time-series Study site followed a general annual trend of DOC accumulation in the surface during stratified periods followed by downward flux during winter convective mixing. Changes in the amino acid concentrations and compositions provide useful indices of diagenetic alteration of DOM. TDAA concentrations and degradation indices increased in the mesopelagic zone during mixing, indicating the export of a relatively less diagenetically altered (i.e. more labile) DOM. During periods of deep mixing, a unique subset of dissolved metabolites, such as amino acids, vitamins, and benzoic acids, was produced or lost. DOM export and compositional change were accompanied by mesopelagic bacterial growth and response of specific bacterial lineages in the SAR11, SAR202, and SAR86 clades, Acidimicrobiales, and Flavobacteria, during and shortly following deep mixing. Complementary DOM biogeochemistry and microbial measurements revealed seasonal changes in DOM composition and diagenetic state, highlighting microbial alteration of the quantity and quality of DOM in the ocean.
Abstract.
2021
Diaz BP, Knowles B, Johns CT, Laber CP, Bondoc KGV, Haramaty L, Natale F, Harvey EL, Kramer SJ, Bolaños LM, et al (2021). Seasonal mixed layer depth shapes phytoplankton physiology, viral production, and accumulation in the North Atlantic.
Nat Commun,
12(1).
Abstract:
Seasonal mixed layer depth shapes phytoplankton physiology, viral production, and accumulation in the North Atlantic.
Seasonal shifts in phytoplankton accumulation and loss largely follow changes in mixed layer depth, but the impact of mixed layer depth on cell physiology remains unexplored. Here, we investigate the physiological state of phytoplankton populations associated with distinct bloom phases and mixing regimes in the North Atlantic. Stratification and deep mixing alter community physiology and viral production, effectively shaping accumulation rates. Communities in relatively deep, early-spring mixed layers are characterized by low levels of stress and high accumulation rates, while those in the recently shallowed mixed layers in late-spring have high levels of oxidative stress. Prolonged stratification into early autumn manifests in negative accumulation rates, along with pronounced signatures of compromised membranes, death-related protease activity, virus production, nutrient drawdown, and lipid markers indicative of nutrient stress. Positive accumulation renews during mixed layer deepening with transition into winter, concomitant with enhanced nutrient supply and lessened viral pressure.
Abstract.
Author URL.
Bolaños LM, Choi CJ, Worden AZ, Baetge N, Carlson CA, Giovannoni S (2021). Seasonality of the Microbial Community Composition in the North Atlantic.
Frontiers in Marine Science,
8Abstract:
Seasonality of the Microbial Community Composition in the North Atlantic
Planktonic communities constitute the basis of life in marine environments and have profound impacts in geochemical cycles. In the North Atlantic, seasonality drives annual transitions in the ecology of the water column. Phytoplankton bloom annually in spring as a result of these transitions, creating one of the major biological pulses in productivity on earth. The timing and geographical distribution of the spring bloom as well as the resulting biomass accumulation have largely been studied using the global capacity of satellite imaging. However, fine-scale variability in the taxonomic composition, spatial distribution, seasonal shifts, and ecological interactions with heterotrophic bacterioplankton has remained largely uncharacterized. The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) conducted four meridional transects to characterize plankton ecosystems in the context of the annual bloom cycle. Using 16S rRNA gene-based community profiles we analyzed the temporal and spatial variation in plankton communities. Seasonality in phytoplankton and bacterioplankton composition was apparent throughout the water column, with changes dependent on the hydrographic origin. From winter to spring in the subtropic and subpolar subregions, phytoplankton shifted from the predominance of cyanobacteria and picoeukaryotic green algae to diverse photosynthetic eukaryotes. By autumn, the subtropics were dominated by cyanobacteria, while a diverse array of eukaryotes dominated the subpolar subregions. Bacterioplankton were also strongly influenced by geographical subregions. SAR11, the most abundant bacteria in the surface ocean, displayed higher richness in the subtropics than the subpolar subregions. SAR11 subclades were differentially distributed between the two subregions. Subclades Ia.1 and Ia.3 co-occurred in the subpolar subregion, while Ia.1 dominated the subtropics. In the subtropical subregion during the winter, the relative abundance of SAR11 subclades “II” and 1c.1 were elevated in the upper mesopelagic. In the winter, SAR202 subclades generally prevalent in the bathypelagic were also dominant members in the upper mesopelagic zones. Co-varying network analysis confirmed the large-scale geographical organization of the plankton communities and provided insights into the vertical distribution of bacterioplankton. This study represents the most comprehensive survey of microbial profiles in the western North Atlantic to date, revealing stark seasonal differences in composition and richness delimited by the biogeographical distribution of the planktonic communities.
Abstract.
2020
Liu S, Parsons R, Opalk K, Baetge N, Giovannoni S, Bolaños LM, Kujawinski EB, Longnecker K, Lu Y, Halewood E, et al (2020). Different carboxyl‐rich alicyclic molecules proxy compounds select distinct bacterioplankton for oxidation of dissolved organic matter in the mesopelagic Sargasso Sea.
Limnology and Oceanography,
65(7), 1532-1553.
Abstract:
Different carboxyl‐rich alicyclic molecules proxy compounds select distinct bacterioplankton for oxidation of dissolved organic matter in the mesopelagic Sargasso Sea
AbstractMarine dissolved organic matter (DOM) varies in its recalcitrance to rapid microbial degradation. DOM of varying recalcitrance can be exported from the ocean surface to depth by subduction or convective mixing and oxidized over months to decades in deeper seawater. Carboxyl‐rich alicyclic molecules (CRAM) are characterized as a major component of recalcitrant DOM throughout the oceanic water column. The oxidation of CRAM‐like compounds may depend on specific bacterioplankton lineages with oxidative enzymes capable of catabolizing complex molecular structures like long‐chain aliphatics, cyclic alkanes, and carboxylic acids. To investigate the interaction between bacteria and CRAM‐like compounds, we conducted microbial remineralization experiments using several compounds rich in carboxyl groups and/or alicyclic rings, including deoxycholate, humic acid, lignin, and benzoic acid, as proxies for CRAM. Mesopelagic seawater (200 m) from the northwest Sargasso Sea was used as media and inoculum and incubated over 28 d. All amendments demonstrated significant DOC removal (2–11 μmol C L−1) compared to controls. Bacterioplankton abundance increased significantly in the deoxycholate and benzoic acid treatments relative to controls, with fast‐growing Spongiibacteracea, Euryarcheaota, and slow‐growing SAR11 enriched in the deoxycholate treatment and fast‐growing Alteromonas, Euryarcheaota, and Thaumarcheaota enriched in the benzoic acid treatment. In contrast, bacterioplankton grew slower in the lignin and humic acid treatments, with oligotrophic SAR202 becoming significantly enriched in the lignin treatment. Our results indicate that the character of the CRAM proxy compounds resulted in distinct bacterioplankton removal rates of DOM and affected specific lineages of bacterioplankton capable of responding.
Abstract.
Suffridge CP, Bolaños LM, Bergauer K, Worden AZ, Morré J, Behrenfeld MJ, Giovannoni SJ (2020). Exploring Vitamin B1 Cycling and its Connections to the Microbial Community in the North Atlantic Ocean.
Frontiers in Marine Science,
7Abstract:
Exploring Vitamin B1 Cycling and its Connections to the Microbial Community in the North Atlantic Ocean
Vitamin B1 (thiamin) is an essential coenzyme for all cells. Recent findings from experimental cell biology and genome surveys have shown that thiamin cycling by plankton is far more complex than was previously understood. Many plankton cells cannot produce thiamin (are auxotrophic) and obligately require an exogenous source of thiamin or one or more of 5 different thiamin-related compounds (TRCs). Despite this emerging evidence for the evolution among plankton of complex interactions related to thiamin, the influence of TRCs on plankton community structure and productivity are not understood. We report measurements of three dissolved TRCs 4-amino-5-aminomethyl-2-methylpyrimidine (AmMP), 5-(2-hydroxyethyl)-4-methyl-1,3-thiazole-2-carboxylic acid (cHET), and 4-methyl-5-thiazoleethanol (HET) that have never before been assayed in seawater. Here we characterize them alongside other TRCs that were measured previously [thiamin and 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP)], in depth profiles from a latitudinal transect in the north Atlantic in March 2018. TRC concentrations ranged from femptomolar to picomolar. Surface depletion relative to a maximum near the bottom of the euphotic zone and low concentrations at deeper depths were consistent features. Our observations suggest that when bacterial abundance and production are low, TRC concentrations approach a steady state where TRC production and consumption terms are balanced. Standing stocks of TRCs also appear to be positively correlated with bacterial production. However, near the period of peak biomass in the accumulation phase of a bloom we observed an inverse relationship between TRCs and bacterial production, coincident with an increased abundance of Flavobacteria that comparative genomics indicates could be vitamin B1 auxotrophs. While these observations suggest that the dissolved pool of TRCs is often at steady state, with TRC production and consumption balanced, our data suggests that bloom induced shifts in microbial community structure and activity may cause a decoupling between TRC production and consumption, leading to increased abundances of some populations of bacteria that are putatively vitamin B1 auxotrophs.
Abstract.
Maas AE, Liu S, Bolaños LM, Widner B, Parsons R, Kujawinski EB, Blanco-Bercial L, Carlson CA (2020). Migratory Zooplankton Excreta and its Influence on Prokaryotic Communities.
Frontiers in Marine Science,
7Abstract:
Migratory Zooplankton Excreta and its Influence on Prokaryotic Communities
Particulate organic matter (POM) (fecal pellets) from zooplankton has been demonstrated to be an important nutrient source for the pelagic prokaryotic community. Significantly less is known about the chemical composition of the dissolved organic matter (DOM) produced by these eukaryotes and its influence on pelagic ecosystem structure. Zooplankton migrators, which daily transport surface-derived compounds to depth, may act as important vectors of limiting nutrients for mesopelagic microbial communities. In this role, zooplankton may increase the DOM remineralization rate by heterotrophic prokaryotes through the creation of nutrient rich “hot spots” that could potentially increase niche diversity. To explore these interactions, we collected the migratory copepodPleuromamma xiphiasfrom the northwestern Sargasso Sea and sampled its excreta after 12–16 h of incubation. We measured bulk dissolved organic carbon (DOC), dissolved free amino acids (DFAA) via high performance liquid chromatography and dissolved targeted metabolites via quantitative mass spectrometry (UPLC-ESI-MSMS) to quantify organic zooplankton excreta production and characterize its composition. We observed production of labile DOM, including amino acids, vitamins, and nucleosides. Additionally, we harvested a portion of the excreta and subsequently used it as the growth medium for mesopelagic (200 m) bacterioplankton dilution cultures. In zooplankton excreta treatments we observed a four-fold increase in bacterioplankton cell densities that reached stationary growth phase after five days of dark incubation. Analyses of 16S rRNA gene amplicons suggested a shift from oligotrophs typical of open ocean and mesopelagic prokaryotic communities to more copiotrophic bacterial lineages in the presence of zooplankton excreta. These results support the hypothesis that zooplankton and prokaryotes are engaged in complex and indirect ecological interactions, broadening our understanding of the microbial loop.
Abstract.
Bolaños LM, Karp-Boss L, Choi CJ, Worden AZ, Graff JR, Haëntjens N, Chase AP, Della Penna A, Gaube P, Morison F, et al (2020). Small phytoplankton dominate western North Atlantic biomass.
The ISME Journal,
14(7), 1663-1674.
Abstract:
Small phytoplankton dominate western North Atlantic biomass
AbstractThe North Atlantic phytoplankton spring bloom is the pinnacle in an annual cycle that is driven by physical, chemical, and biological seasonality. Despite its important contributions to the global carbon cycle, transitions in plankton community composition between the winter and spring have been scarcely examined in the North Atlantic. Phytoplankton composition in early winter was compared with latitudinal transects that captured the subsequent spring bloom climax. Amplicon sequence variants (ASVs), imaging flow cytometry, and flow-cytometry provided a synoptic view of phytoplankton diversity. Phytoplankton communities were not uniform across the sites studied, but rather mapped with apparent fidelity onto subpolar- and subtropical-influenced water masses of the North Atlantic. At most stations, cells < 20-µm diameter were the main contributors to phytoplankton biomass. Winter phytoplankton communities were dominated by cyanobacteria and pico-phytoeukaryotes. These transitioned to more diverse and dynamic spring communities in which pico- and nano-phytoeukaryotes, including many prasinophyte algae, dominated. Diatoms, which are often assumed to be the dominant phytoplankton in blooms, were contributors but not the major component of biomass. We show that diverse, small phytoplankton taxa are unexpectedly common in the western North Atlantic and that regional influences play a large role in modulating community transitions during the seasonal progression of blooms.
Abstract.
Liu S, Baetge N, Comstock J, Opalk K, Parsons R, Halewood E, English CJ, Giovannoni S, Bolaños LM, Nelson CE, et al (2020). Stable Isotope Probing Identifies Bacterioplankton Lineages Capable of Utilizing Dissolved Organic Matter Across a Range of Bioavailability. Frontiers in Microbiology, 11
2019
Bolaños LM, Rosenblueth M, Manrique de Lara A, Migueles-Lozano A, Gil-Aguillón C, Mateo-Estrada V, González-Serrano F, Santibáñez-López CE, García-Santibáñez T, Martínez-Romero E, et al (2019). Cophylogenetic analysis suggests cospeciation between the Scorpion Mycoplasma Clade symbionts and their hosts. PLOS ONE, 14(1), e0209588-e0209588.
Behrenfeld MJ, Moore RH, Hostetler CA, Graff J, Gaube P, Russell LM, Chen G, Doney SC, Giovannoni S, Liu H, et al (2019). The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): Science Motive and Mission Overview. Frontiers in Marine Science, 6
2015
Degli Esposti M, Rosas-Pérez T, Servín-Garcidueñas LE, Bolaños LM, Rosenblueth M, Martínez-Romero E (2015). Molecular Evolution of Cytochrome bd Oxidases across Proteobacterial Genomes. Genome Biology and Evolution, 7(3), 801-820.
Bolaños LM, Rosenblueth M, Castillo‐Ramírez S, Figuier‐Huttin G, Martínez‐Romero E (2015). Species‐specific diversity of novel bacterial lineages and differential abundance of predicted pathways for toxic compound degradation in scorpion gut microbiota.
Environmental Microbiology,
18(5), 1364-1378.
Abstract:
Species‐specific diversity of novel bacterial lineages and differential abundance of predicted pathways for toxic compound degradation in scorpion gut microbiota
SummaryScorpions are considered ‘living fossils’ that have conserved ancestral anatomical features and have adapted to numerous habitats. However, their gut microbiota diversity has not been studied. Here, we characterized the gut microbiota of two scorpion species, Vaejovis smithi and Centruroides limpidus. Our results indicate that scorpion gut microbiota is species‐specific and that food deprivation reduces bacterial diversity. 16S rRNA gene phylogenetic analysis revealed novel bacterial lineages showing a low level of sequence identity to any known bacteria. Furthermore, these novel bacterial lineages were each restricted to a different scorpion species. Additionally, our results of the predicted metagenomic profiles revealed a core set of pathways that were highly abundant in both species, and mostly related to amino acid, carbohydrate, vitamin and cofactor metabolism. Notably, the food‐deprived V. smithi shotgun metagenome matched almost completely the metabolic features of the prediction. Finally, comparisons among predicted metagenomic profiles showed that toxic compound degradation pathways were more abundant in recently captured C. limpidus scorpions. This study gives a first insight into the scorpion gut microbiota and provides a reference for future studies on the gut microbiota from other arachnid species.
Abstract.
2014
Bolaños LM, Servín-Garcidueñas LE, Martínez-Romero E (2014). Arthropod–Spiroplasma relationship in the genomic era. FEMS Microbiology Ecology, 91(2), 1-8.
2013
Ramírez-Puebla ST, Servín-Garcidueñas LE, Jiménez-Marín B, Bolaños LM, Rosenblueth M, Martínez J, Rogel MA, Ormeño-Orrillo E, Martínez-Romero E (2013). Gut and Root Microbiota Commonalities.
Applied and Environmental Microbiology,
79(1), 2-9.
Abstract:
Gut and Root Microbiota Commonalities
ABSTRACT
. Animal guts and plant roots have absorption roles for nutrient uptake and converge in harboring large, complex, and dynamic groups of microbes that participate in degradation or modification of nutrients and other substances. Gut and root bacteria regulate host gene expression, provide metabolic capabilities, essential nutrients, and protection against pathogens, and seem to share evolutionary trends.
Abstract.