Publications by year
2021
Okoffo ED, O'Brien S, Ribeiro F, Burrows SD, Toapanta T, Rauert C, O'Brien JW, Tscharke BJ, Wang X, Thomas KV, et al (2021). Plastic particles in soil: state of the knowledge on sources, occurrence and distribution, analytical methods and ecological impacts.
Environmental Science: Processes & Impacts,
23(2), 240-274.
Abstract:
Plastic particles in soil: state of the knowledge on sources, occurrence and distribution, analytical methods and ecological impacts
Increased production and use of plastics has resulted in growth in the amount of plastic debris accumulating in the environment, potentially fragmenting into smaller pieces.
Abstract.
Okoffo ED, Donner E, McGrath SP, Tscharke BJ, O'Brien JW, O'Brien S, Ribeiro F, Burrows SD, Toapanta T, Rauert C, et al (2021). Plastics in biosolids from 1950 to 2016: a function of global plastic production and consumption.
Water Res,
201Abstract:
Plastics in biosolids from 1950 to 2016: a function of global plastic production and consumption.
Plastics are ubiquitous contaminants that leak into the environment from multiple pathways including the use of treated sewage sludge (biosolids). Seven common plastics (polymers) were quantified in the solid fraction of archived biosolids samples from Australia and the United Kingdom from between 1950 and 2016. Six plastics were detected, with increasing concentrations observed over time for each plastic. Biosolids plastic concentrations correlated with plastic production estimates, implying a potential link between plastics production, consumption and leakage into the environment. Prior to the 1990s, the leakage of plastics into biosolids was limited except for polystyrene. Increased leakage was observed from the 1990s onwards; potentially driven by increased consumption of polyethylene, polyethylene terephthalate and polyvinyl chloride. We show that looking back in time along specific plastic pollution pathways may help unravel the potential sources of plastics leakage into the environment and provide quantitative evidence to support the development of source control interventions or regulations.
Abstract.
Author URL.
O'Brien S, Okoffo ED, Rauert C, O'Brien JW, Ribeiro F, Burrows SD, Toapanta T, Wang X, Thomas KV (2021). Quantification of selected microplastics in Australian urban road dust.
J Hazard Mater,
416Abstract:
Quantification of selected microplastics in Australian urban road dust.
Microplastics (1 - 5000 µm) are pervasive in every compartment of our environment. However, little is understood regarding the concentration and size distribution of microplastics in road dust, and how they change in relation to human activity. Within road dust, microplastics move through the environment via atmospheric transportation and stormwater run-off into waterways. Human exposure pathways to road dust include dermal contact, inhalation and ingestion. In this study, road dust along an urban to rural transect within South-East Queensland, Australia was analysed using Accelerated Solvent Extraction followed by pyrolysis Gas Chromatography-Mass Spectrometry (Pyr-GC/MS). Polypropylene, polystyrene, polyethylene terephthalate, polyvinyl chloride, poly (methyl methacrylate) and polyethylene were quantified. Microplastic concentrations ranged from ~0.5 mg/g (rural site) to 6 mg/g (Brisbane city), consisting primarily of polyvinyl chloride (29%) and polyethylene terephthalate (29%). Size fractionation (
Abstract.
Author URL.
2020
Burrows SD, Frustaci S, Thomas KV, Galloway T (2020). Expanding exploration of dynamic microplastic surface characteristics and interactions.
TrAC - Trends in Analytical Chemistry,
130Abstract:
Expanding exploration of dynamic microplastic surface characteristics and interactions
Microplastics have been found in all marine ecosystems, raising concern about their potential environmental impacts. Yet relatively little research has focused on surface characteristics, compared to polymer type. The aim of this review is to discuss the importance of microplastic surface properties and how expanded characterisation and more detailed quantification can aid in assessing their behaviours in aquatic environments. Concepts including surface roughness, formation of surface ecocoronae and sorptive behaviours of microplastic surfaces are discussed. To address these concepts, three exemplary methods are introduced and their application to the study of microplastic surfaces discussed with the following recommendations; atomic force microscopy should be explored for conducting physical surface characterisation and to examine surface roughness; double-shot Pyrolysis-Gas Chromatography–Mass Spectroscopy should be considered for examining microplastic sorption behaviours in multi-solute media; and finally, Whispering Gallery Mode nanosensing techniques should be explored as a potential means to generate data on microplastic sorption kinetics.
Abstract.
Full text.
Okoffo ED, Tscharke BJ, O'Brien JW, O'Brien S, Ribeiro F, Burrows SD, Choi PM, Wang X, Mueller JF, Thomas KV, et al (2020). Release of Plastics to Australian Land from Biosolids End-Use.
Environ Sci Technol,
54(23), 15132-15141.
Abstract:
Release of Plastics to Australian Land from Biosolids End-Use.
Plastics are contaminants of emerging concern that can enter the environment from multiple sources, including via land application of treated sewage sludge (biosolids). Biosolids samples collected from 82 wastewater treatment plants (WWTPs) across Australia and covering 34% of the population during census week in 2016 were quantitatively analyzed to estimate the release of seven common plastics. Quantitative analysis was performed by pressurized liquid extraction followed by double-shot microfurnace pyrolysis coupled to gas chromatography mass spectrometry. Ninety nine percent of the samples contained plastics (Σ6plastics) at concentrations of between 0.4 and 23.5 mg/g dry weight (median; 10.4 mg/g dry weight), while polycarbonate was not detected in any sample. Per-capita mass loads of plastics (Σ6plastics) released were between 8 and 877 g/person/year across all investigated WWTPs. Polyethylene was the predominant plastic detected, contributing to 69% of Σ6plastics. Based on the concentrations measured, it was projected that around 4700 metric tons (Mt) of plastics are released into the Australian environment through biosolids end-use each year, equating to approximately 200 g/person/year, which represents 0.13% of total plastics use in Australia. of this, 3700 Mt of plastics are released to agricultural lands and 140 Mt to landscape topsoil. Our results provide a first quantitative per-capita mass loads and emission estimate of plastic types through biosolids end-use.
Abstract.
Author URL.