Skip to main content

Faculty of Health and Life Sciences

Dr Yosuke Ono

Dr Yosuke Ono

Research Fellow (LSI)

 Y.Ono@exeter.ac.uk

 Living Systems Institute S02.07

 

Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD


Overview

I am a resercher in molecular and developmetal biology and using zebrafish as a model. My current research is focusing on the regulatory mechanisms of muscle morphogenesis, growth and regeneration. I'm analysing the function of muscle-specific genes during development using genetically modified (transgenic and mutant) zebrafish. Also, I'm working on CRISPR/Cas9-mediated genome editing technologies using zebrafish embryos.

Qualifications

2010 PhD Aquatic Bioscience, The University of Tokyo, Japan (supervisor: Prof. Shugo Watabe)

2007 Master, Aquatic Bioscience, The University of Tokyo, Japan

2005 Bachelor, Agriculture, The University of Tokyo, Japan

Career

2017-present Research Fellow, Living Systems Institute, University of Exeter

2013-2017 Research Fellow, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (Philip Ingham lab)

2010-2013 Research Fellow, A*STAR Institute of Molecular and Cell Biology, Singapore (Philip Ingham lab)

Links

Back to top


Publications

Journal articles

Zhang C, Brunt L, Ono Y, Rogers S, Scholpp S (2024). Cytoneme-mediated transport of active Wnt5b-Ror2 complexes in zebrafish. Nature, 625(7993), 126-133. Abstract.  Author URL.
Winter MJ, Ono Y, Ball JS, Walentinsson A, Michaelsson E, Tochwin A, Scholpp S, Tyler CR, Rees S, Hetheridge MJ, et al (2022). A Combined Human in Silico and CRISPR/Cas9-Mediated in Vivo Zebrafish Based Approach to Provide Phenotypic Data for Supporting Early Target Validation. Frontiers in Pharmacology, 13
Routledge D, Rogers S, Ono Y, Brunt L, Meniel V, Tornillo G, Ashktorab H, Phesse TJ, Scholpp S (2022). The scaffolding protein flot2 promotes cytoneme-based transport of wnt3 in gastric cancer. eLife, 11 Abstract.
Saud HA, O'Neill PA, Ono Y, Verbruggen B, Van Aerle R, Kim J, Lee J-S, Ring BC, Kudoh T (2021). Molecular mechanisms of embryonic tail development in the self-fertilizing mangrove killifish Kryptolebias marmoratus. Development, 148(24). Abstract.  Author URL.
Alshami IJJ, Ono Y, Correia A, Hacker C, Lange A, Scholpp S, Kawasaki M, Ingham PW, Kudoh T (2020). Development of the electric organ in embryos and larvae of the knifefish, Brachyhypopomus gauderio. Developmental Biology, 466(1-2), 99-108. Abstract.
Bosze B, Ono Y, Mattes B, Sinner C, Gourain V, Thumberger T, Tlili S, Wittbrodt J, Saunders TE, Strähle U, et al (2020). Pcdh18a regulates endocytosis of E-cadherin during axial mesoderm development in zebrafish. Histochem Cell Biol, 154(5), 463-480. Abstract.  Author URL.
Yin J, Lee R, Ono Y, Ingham PW, Saunders TE (2018). Spatiotemporal Coordination of FGF and Shh Signaling Underlies the Specification of Myoblasts in the Zebrafish Embryo. Developmental Cell, 46(6), 735-750.e4. Abstract.
Gurung R, Ono Y, Baxendale S, Lee SLC, Moore S, Calvert M, Ingham PW (2017). A Zebrafish Model for a Human Myopathy Associated with Mutation of the Unconventional Myosin MYO18B. Genetics, 205(2), 725-735. Abstract.  Author URL.
Ono Y, Yu W, Jackson HE, Parkin CA, Ingham PW (2015). Adaxial cell migration in the zebrafish embryo is an active cell autonomous property that requires the Prdm1a transcription factor. Differentiation, 89(3-4), 77-86.
Jackson HE, Ono Y, Wang X, Elworthy S, Cunliffe VT, Ingham PW (2015). The role of Sox6 in zebrafish muscle fiber type specification. Skelet Muscle, 5(1). Abstract.  Author URL.
Ikeda D, Ono Y, Hirano S, Kan-no N, Watabe S (2013). Lampreys have a single gene cluster for the fast skeletal myosin heavy chain gene family. PLoS One, 8(12). Abstract.  Author URL.
Yasmin L, Kinoshita S, Asaduzzaman M, Akolkar DB, Ikeda D, Ono Y, Watabe S (2011). A 5'-flanking region of embryonic-type myosin heavy chain gene, MYH(M)₇₄₃₋₂, from torafugu Takifugu rubripes regulates developmental muscle-specific expression. Comp Biochem Physiol Part D Genomics Proteomics, 6(1), 76-81. Abstract.  Author URL.
Wang X, Ono Y, Tan SC, Chai RJ, Parkin C, Ingham PW (2011). Prdm1a and miR-499 act sequentially to restrict Sox6 activity to the fast-twitch muscle lineage in the zebrafish embryo. Development, 138(20), 4399-4404. Abstract.
Ono Y, Kinoshita S, Ikeda D, Watabe S (2010). Early development of medaka <i>Oryzias latipes</i> muscles as revealed by transgenic approaches using embryonic and larval types of myosin heavy chain genes. Developmental Dynamics, 239(6), 1807-1817. Abstract.
Akolkar DB, Kinoshita S, Yasmin L, Ono Y, Ikeda D, Yamaguchi H, Nakaya M, Erdogan O, Watabe S (2010). Fibre type-specific expression patterns of myosin heavy chain genes in adult torafugu Takifugu rubripes muscles. J Exp Biol, 213(1), 137-145. Abstract.  Author URL.
Ikeda D, Nihei Y, Ono Y, Watabe S (2010). Three embryonic myosin heavy chain genes encoding different motor domain structures from common carp show distinct expression patterns in cranial muscles. Mar Genomics, 3(1), 1-9. Abstract.  Author URL.
Ikeda D, Ono Y, Snell P, Edwards YJK, Elgar G, Watabe S (2007). Divergent evolution of the myosin heavy chain gene family in fish and tetrapods: evidence from comparative genomic analysis. Physiol Genomics, 32(1), 1-15. Abstract.  Author URL.
Nihei Y, Kobiyama A, Ikeda D, Ono Y, Ohara S, Cole NJ, Johnston IA, Watabe S (2006). Molecular cloning and mRNA expression analysis of carp embryonic, slow and cardiac myosin heavy chain isoforms. J Exp Biol, 209(Pt 1), 188-198. Abstract.  Author URL.
Ono Y, Liang C, Ikeda D, Watabe S (2006). cDNA cloning of myosin heavy chain genes from medaka <i>Oryzias latipes</i> embryos and larvae and their expression patterns during development. Developmental Dynamics, 235(11), 3092-3101. Abstract.

Back to top


Edit Profile