Publications by year
In Press
Mill J, Leung SK, Ribarska T, Hannon E, Smith A, Pishva E, Poschmann J, Moore K, Troakes C, Al-Sarraj S, et al (In Press). A histone acetylome-wide association study of Alzheimer’s disease identifies disease-associated H3K27ac differences in the entorhinal cortex. Nature Neuroscience
Marzi SJ, Ribarska T, Smith AR, Hannon E, Poschmann J, Moore K, Troakes C, Al-Sarraj S, Beck S, Newman S, et al (In Press). A histone acetylome-wide association study of Alzheimer’s disease: neuropathology-associated regulatory variation in the human entorhinal cortex.
Abstract:
A histone acetylome-wide association study of Alzheimer’s disease: neuropathology-associated regulatory variation in the human entorhinal cortex
AbstractAlzheimer’s disease (AD) is a chronic neurodegenerative disorder characterized by the progressive accumulation of amyloid-β (Aβ) plaques and neurofibrillary tangles in the neocortex. Recent studies have implicated a role for regulatory genomic variation in AD progression, finding widespread evidence for altered DNA methylation associated with neuropathology. To date, however, no study has systematically examined other types of regulatory genomic modifications in AD. In this study, we quantified genome-wide patterns of lysine H3K27 acetylation (H3K27ac) - a robust mark of active enhancers and promoters that is strongly correlated with gene expression and transcription factor binding - in entorhinal cortex samples from AD cases and matched controls (n = 47) using chromatin immunoprecipitation followed by highly parallel sequencing (ChIP-seq). Across ~182,000 robustly detected H3K27ac peak regions, we found widespread acetylomic variation associated with AD neuropathology, identifying 4,162 differential peaks (FDR < 0.05) between AD cases and controls. These differentially acetylated peaks are enriched in disease-specific biological pathways and include regions annotated to multiple genes directly involved in the progression of Aβ and tau pathology (e.g. APP, PSEN1, PSEN2, MAPT), as well as genomic regions containing variants associated with sporadic late-onset AD. This is the first study of variable H3K27ac yet undertaken in AD and the largest study investigating this modification in the entorhinal cortex. In addition to identifying molecular pathways associated with AD neuropathology, we present a framework for genome-wide studies of histone modifications in complex disease, integrating our data with results obtained from genome-wide association studies as well as other epigenetic marks profiled on the same samples.
Abstract.
Schley RJ, Pineiro R, Nicholls JA, Pezzini FF, Kidner C, Farbos A, Moore K, Ringelberg JJ, Twyford AD, Dexter KG, et al (In Press). Do Reticulate Relationships Between Tropical Trees Drive Diversification? Insights from Inga (Fabaceae).
Abstract:
Do Reticulate Relationships Between Tropical Trees Drive Diversification? Insights from Inga (Fabaceae)
Evolutionary radiations underlie much of the species diversity of life on Earth, particularly within the world's most species-rich tree flora - that of the Amazon rainforest. Hybridisation catalyses many radiations by generating genetic and phenotypic novelty that promote rapid speciation, but the influence of hybridisation on Amazonian tree radiations has been little studied. We address this using the ubiquitous, species-rich neotropical tree genus Inga, which typifies rapid radiations of rainforest trees. We assess patterns of gene tree incongruence to ascertain whether hybridisation catalysed rapid radiation in Inga. Given the importance of insect herbivory in structuring rainforest tree communities (and hence the potential for hybridisation to promote adaptation through admixture of defence traits), we also test whether introgression of loci underlying chemical defences against herbivory facilitated rapid speciation in Inga. Our phylogenomic analyses of 189/288 Inga species using >1300 target capture loci showed widespread introgression in Inga and closely related genera. Specifically, we found widespread phylogenetic incongruence explained by introgression, with phylogenetic networks recovering multiple introgression events across Inga and related genera. In addition, most defence chemistry loci showed evidence of positive selection and marginally higher levels of introgression. Interestingly, we recovered around 20% admixed variation between multiple Inga species, a similar proportion to that found in other radiations catalysed by 'ancient' hybridisation. Overall our results suggest that introgression has occurred widely over the course of Inga's history, likely facilitated by extensive dispersal across Amazonia, and that in some cases introgression of chemical defence loci may facilitate adaptation in Inga.
Abstract.
Jeffries AR, Leung SK, Castanho I, Moore K, Davies JP, Dempster EL, Bray NJ, O‘Neill P, Tseng E, Ahmed Z, et al (In Press). Full-length transcript sequencing of human and mouse identifies widespread isoform diversity and alternative splicing in the cerebral cortex.
Abstract:
Full-length transcript sequencing of human and mouse identifies widespread isoform diversity and alternative splicing in the cerebral cortex
AbstractAlternative splicing is a post-transcriptional regulatory mechanism producing multiple distinct mRNA molecules from a single pre-mRNA. Alternative splicing has a prominent role in the central nervous system, impacting neurodevelopment and various neuronal functions as well as being increasingly implicated in brain disorders including autism, schizophrenia and Alzheimer’s disease. Standard short-read RNA-Seq approaches only sequence fragments of the mRNA molecule, making it difficult to accurately characterize the true nature of RNA isoform diversity. In this study, we used long-read isoform sequencing (Iso-Seq) to generate full-length cDNA sequences and map transcript diversity in the human and mouse cerebral cortex. We identify widespread RNA isoform diversity amongst expressed genes in the cortex, including many novel transcripts not present in existing genome annotations. Alternative splicing events were found to make a major contribution to RNA isoform diversity in the cortex, with intron retention being a relatively common event associated with nonsense-mediated decay and reduced transcript expression. of note, we found evidence for transcription from novel (unannotated genes) and fusion events between neighbouring genes. Although global patterns of RNA isoform diversity were found to be generally similar between human and mouse cortex, we identified some notable exceptions. We also identified striking developmental changes in transcript diversity, with differential transcript usage between human adult and fetal cerebral cortex. Finally, we found evidence for extensive isoform diversity in genes associated with autism, schizophrenia and Alzheimer’s disease. Our data confirm the importance of alternative splicing in the cerebral cortex, dramatically increasing transcriptional diversity and representing an important mechanism underpinning gene regulation in the brain. We provide this transcript level data as a resource to the scientific community.
Abstract.
Warwick-Dugdale J, Tian F, Michelsen M, Cronin DR, Moore K, Farbos A, Chittick L, Bell A, Buchholz HH, Parsons RJ, et al (In Press). Long-read powered viral metagenomics in the Oligotrophic Sargasso Sea.
Abstract:
Long-read powered viral metagenomics in the Oligotrophic Sargasso Sea
ABSTRACTIn the summer months, the waters of the Sargasso Sea are nutrient-limited and strongly stratified, serving as a model system for the predicted warmer and nutrient-limited oceans of the Anthropocene. The dominant microorganisms of surface waters are key drivers of the global carbon cycle. However, the viruses of the Sargasso Sea that shape these host communities and influence host biogeochemical function are not well understood. Here, we apply a hybrid sequencing approach that combines short- and long reads to survey Sargasso Sea phage communities via metagenomics at the viral maximum (80m) and mesopelagic (200m) depths. Taxonomically, we identified 2,301 Sargasso Sea phage populations (~species-level taxonomy) across 186 genera. Over half of the phage populations lacked representation in other global ocean viral metagenomes, whilst 177 phage genera lacked representation in phage isolate databases. Viral fraction and cell-associated viral communities captured in short-read data were distinct and decoupled at both depths, possibly indicating low active lytic viral replication in the Sargasso Sea, with viral turnover occurring across periods longer than the sampling period of three days. Inclusion of long read data was critical for (1) the identification of 79 ecologically important and common viral genomes; (2) capturing the extent of viral genome microdiversity; and (3) enabling the recovery of hypervariable regions in viral genomes predicted to encode proteins involved in host recognition, DNA synthesis and DNA packaging. Host prediction was only possible for ~4% of viral populations. Genomes of phages known to infect Prochlorococcus and Pelagibacter were poorly represented in our data, supporting recent evidence of low infection levels in the dominant bacterial taxa of oligotrophic regions.SubjectsBioinformatics, Genomics, Marine Biology, Microbiology, VirologySequence data accession numbersPRJNA767318
Abstract.
Warwick-Dugdale J, Moore K, Allen M, Temperton B (In Press). Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ
Warwick-Dugdale J, Solonenko N, Moore K, Chittick L, Gregory AC, Allen MJ, Sullivan MB, Temperton B (In Press). Long-read viral metagenomics enables capture of abundant and microdiverse viral populations and their niche-defining genomic islands.
Abstract:
Long-read viral metagenomics enables capture of abundant and microdiverse viral populations and their niche-defining genomic islands
AbstractMarine viruses impact global biogeochemical cycles via their influence on host community structure and function, yet our understanding of viral ecology is constrained by limitations in culturing of important hosts and the lack of a ‘universal’ gene to facilitate community surveys. Short-read viral metagenomic studies have provided clues to viral function and first estimates of global viral gene abundance and distribution. However, short-read assemblies are confounded by populations with high levels of strain evenness and nucleotide diversity (microdiversity), limiting assembly of some of the most abundant viruses on Earth. Assembly across genomic islands which likely contain niche-defining genes that drive ecological speciation is also challenging. While such populations and features are successfully captured by single-virus genomics and fosmid-based approaches, both techniques require considerable cost and technical expertise. Here we established a low-cost, low-input, high throughput alternative method for improving assembly of viral metagenomics using long read technology. Named ‘VirION’ (Viral, long-read metagenomics via MinION sequencing), our sequencing approach and complementary bioinformatics pipeline (i) increased number and completeness of assembled viral genomes compared to short-read sequencing methods; (ii) captured populations of abundant viruses with high microdiversity missed by short-read methods and (iii) captured more and longer genomic islands than short-read methods. Thus, VirION provides a high throughput and cost-effective alternative to fosmid and single-virus genomic approaches to more comprehensively explore viral communities in nature.
Abstract.
Shaw S, Le Cocq K, Paszkiewicz K, Moore K, Winsbury R, Studholme D, Salmon D, Thornton CR, Grant MR (In Press). Transcriptional reprogramming of Trichoderma hamatum GD12 in soil during plant growth promotion and biological control of Sclerotinia sclerotiorum. Environmental Microbiology
2023
Clark GC, Elfsmark L, Armstrong S, Essex-Lopresti A, Gustafsson Å, Ryan Y, Moore K, Paszkiewicz K, Green AC, Hiscox JA, et al (2023). From “crisis to recovery”: a complete insight into the mechanisms of chlorine injury in the lung. Life Sciences, 312, 121252-121252.
Child HT, O'Neill PA, Moore K, Rowe W, Denise H, Bass D, Wade MJ, Loose M, Paterson S, van Aerle R, et al (2023). Optimised protocol for monitoring SARS-CoV-2 in wastewater using reverse complement PCR-based whole-genome sequencing.
PLoS One,
18(4).
Abstract:
Optimised protocol for monitoring SARS-CoV-2 in wastewater using reverse complement PCR-based whole-genome sequencing.
Monitoring the spread of viral pathogens in the population during epidemics is crucial for mounting an effective public health response. Understanding the viral lineages that constitute the infections in a population can uncover the origins and transmission patterns of outbreaks and detect the emergence of novel variants that may impact the course of an epidemic. Population-level surveillance of viruses through genomic sequencing of wastewater captures unbiased lineage data, including cryptic asymptomatic and undiagnosed infections, and has been shown to detect infection outbreaks and novel variant emergence before detection in clinical samples. Here, we present an optimised protocol for quantification and sequencing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in influent wastewater, used for high-throughput genomic surveillance in England during the COVID-19 pandemic. This protocol utilises reverse compliment PCR for library preparation, enabling tiled amplification across the whole viral genome and sequencing adapter addition in a single step to enhance efficiency. Sequencing of synthetic SARS-CoV-2 RNA provided evidence validating the efficacy of this protocol, while data from high-throughput sequencing of wastewater samples demonstrated the sensitivity of this method. We also provided guidance on the quality control steps required during library preparation and data analysis. Overall, this represents an effective method for high-throughput sequencing of SARS-CoV-2 in wastewater which can be applied to other viruses and pathogens of humans and animals.
Abstract.
Author URL.
2022
Wheildon G, Smith AR, Soanes D, Southern F, Devall M, Moore K, O'Neill P, Troakes C, Lunnon K (2022). DNA methylation of mitochondrial DNA shows variation in human brain.
Alzheimer's and Dementia,
18(S4).
Abstract:
DNA methylation of mitochondrial DNA shows variation in human brain.
Background: There is growing evidence for the role of DNA methylation in regulating the transcription of mitochondrial genes, particularly in neurodegenerative disorders characterized by mitochondrial dysfunction including Alzheimer’s disease (AD). However, to date, a cross-comparative analysis of the mitochondrial DNA methylome in neurodegenerative disorders has yet to be undertaken. Method: Here, we present an interrogation of the mitochondrial DNA methylome at single base resolution, using pyrosequencing, across different types of neurodegenerative disorders. We performed a targeted study design to investigate the D-Loop methylation of the mtDNA in the entorhinal cortex (EC) for a pilot cohort of 26 AD, 22 Dementia with Lewy bodies (DLB) and 26 control samples, matched as closely as possible for age and sex. This research forms the basis of a larger study which will compare D-Loop methylation in several brain regions including the EC, superior temporal gyrus and cerebellum in AD, DLB, Vascular dementia, Huntington’s (HD) and Parkinson’s disease (PD) samples. The striatum and substantia nigra, will also be analyzed in the HD and PD samples respectively. Result: We have identified DNA methylation differences at the D-Loop in different neurodegenerative diseases. In particular, we have found two statistically significant sites that show a decrease in percentage methylation of approximately 4% and 3% in the EC of the DLB brain samples compared to controls. Conclusion: We have discovered differences in DNA methylation across the mitochondrial genome between different types of neurodegenerative disorders in human brain samples using pyrosequencing. Moving forward we will take this approach and expand into the larger cohort to further investigate the role of mitochondrial epigenetic mechanisms in neurodegenerative disorders.
Abstract.
Devall M, Soanes DM, Smith AR, Dempster EL, Smith RG, Burrage J, Iatrou A, Hannon E, Troakes C, Moore K, et al (2022). Genome-wide characterization of mitochondrial DNA methylation in human brain.
Front Endocrinol (Lausanne),
13Abstract:
Genome-wide characterization of mitochondrial DNA methylation in human brain.
BACKGROUND: There is growing interest in the role of DNA methylation in regulating the transcription of mitochondrial genes, particularly in brain disorders characterized by mitochondrial dysfunction. Here, we present a novel approach to interrogate the mitochondrial DNA methylome at single base resolution using targeted bisulfite sequencing. We applied this method to investigate mitochondrial DNA methylation patterns in post-mortem superior temporal gyrus and cerebellum brain tissue from seven human donors. RESULTS: We show that mitochondrial DNA methylation patterns are relatively low but conserved, with peaks in DNA methylation at several sites, such as within the D-LOOP and the genes MT-ND2, MT-ATP6, MT-ND4, MT-ND5 and MT-ND6, predominantly in a non-CpG context. The elevated DNA methylation we observe in the D-LOOP we validate using pyrosequencing. We identify loci that show differential DNA methylation patterns associated with age, sex and brain region. Finally, we replicate previously reported differentially methylated regions between brain regions from a methylated DNA immunoprecipitation sequencing study. CONCLUSIONS: We have annotated patterns of DNA methylation at single base resolution across the mitochondrial genome in human brain samples. Looking to the future this approach could be utilized to investigate the role of mitochondrial epigenetic mechanisms in disorders that display mitochondrial dysfunction.
Abstract.
Author URL.
Glover G, Voliotis M, Łapińska U, Invergo BM, Soanes D, O’Neill P, Moore K, Nikolic N, Petrov PG, Milner DS, et al (2022). Nutrient and salt depletion synergistically boosts glucose metabolism in individual Escherichia coli cells.
Communications Biology,
5(1).
Abstract:
Nutrient and salt depletion synergistically boosts glucose metabolism in individual Escherichia coli cells
AbstractThe interaction between a cell and its environment shapes fundamental intracellular processes such as cellular metabolism. In most cases growth rate is treated as a proximal metric for understanding the cellular metabolic status. However, changes in growth rate might not reflect metabolic variations in individuals responding to environmental fluctuations. Here we use single-cell microfluidics-microscopy combined with transcriptomics, proteomics and mathematical modelling to quantify the accumulation of glucose within Escherichia coli cells. In contrast to the current consensus, we reveal that environmental conditions which are comparatively unfavourable for growth, where both nutrients and salinity are depleted, increase glucose accumulation rates in individual bacteria and population subsets. We find that these changes in metabolic function are underpinned by variations at the translational and posttranslational level but not at the transcriptional level and are not dictated by changes in cell size. The metabolic response-characteristics identified greatly advance our fundamental understanding of the interactions between bacteria and their environment and have important ramifications when investigating cellular processes where salinity plays an important role.
Abstract.
Glover G, Voliotis M, Łapińska U, Invergo BM, Soanes D, O’Neill P, Moore K, Nikolic N, Petrov PG, Milner DS, et al (2022). Nutrient and salt depletion synergistically boosts glucose metabolism in individual bacteria.
Millard RS, Bickley LK, Bateman KS, Verbruggen B, Farbos A, Lange A, Moore KA, Stentiford GD, Tyler CR, van Aerle R, et al (2022). Resistance to white spot syndrome virus in the European shore crab is associated with suppressed virion trafficking and heightened immune responses.
Front Immunol,
13Abstract:
Resistance to white spot syndrome virus in the European shore crab is associated with suppressed virion trafficking and heightened immune responses.
INTRODUCTION: all decapod crustaceans are considered potentially susceptible to White Spot Syndrome Virus (WSSV) infection, but the degree of White Spot Disease (WSD) susceptibility varies widely between species. The European shore crab Carcinus maenas can be infected with the virus for long periods of time without signs of disease. Given the high mortality rate of susceptible species, the differential susceptibility of these resistant hosts offers an opportunity to investigate mechanisms of disease resistance. METHODS: Here, the temporal transcriptional responses (mRNA and miRNA) of C. maenas following WSSV injection were analysed and compared to a previously published dataset for the highly WSSV susceptible Penaeus vannamei to identify key genes, processes and pathways contributing to increased WSD resistance. RESULTS: We show that, in contrast to P. vannamei, the transcriptional response during the first 2 days following WSSV injection in C. maenas is limited. During the later time points (7 days onwards), two groups of crabs were identified, a recalcitrant group where no replication of the virus occurred, and a group where significant viral replication occurred, with the transcriptional profiles of the latter group resembling those of WSSV-susceptible species. We identify key differences in the molecular responses of these groups to WSSV injection. DISCUSSION: We propose that increased WSD resistance in C. maenas may result from impaired WSSV endocytosis due to the inhibition of internal vesicle budding by dynamin-1, and a delay in movement to the nucleus caused by the downregulation of cytoskeletal transcripts required for WSSV cytoskeleton docking, during early stages of the infection. This response allows resistant hosts greater time to fine-tune immune responses associated with miRNA expression, apoptosis and the melanisation cascade to defend against, and clear, invading WSSV. These findings suggest that the initial stages of infection are key to resistance to WSSV in the crab and highlight possible pathways that could be targeted in farmed crustacean to enhance resistance to WSD.
Abstract.
Author URL.
Wheildon G, Smith AR, Soanes D, Smith RG, Moore K, O'Neill P, Morgan K, Thomas AJ, Francis PT, Love S, et al (2022). Targeted bisulfite sequencing analysis of candidate genes associated with Alzheimer’s disease. Alzheimer's & Dementia, 18(S4).
2021
Cano I, Santos EM, Moore K, Farbos A, van Aerle R (2021). Evidence of Transcriptional Shutoff by Pathogenic Viral Haemorrhagic Septicaemia Virus in Rainbow Trout.
Viruses,
13(6).
Abstract:
Evidence of Transcriptional Shutoff by Pathogenic Viral Haemorrhagic Septicaemia Virus in Rainbow Trout.
The basis of pathogenicity of viral haemorrhagic septicaemia virus (VHSV) was analysed in the transcriptome of a rainbow trout cell line inoculated with pathogenic and non-pathogenic VHSV isolates. Although both VHSV isolates showed similar viral replication patterns, the number of differentially expressed genes was 42-fold higher in cells inoculated with the non-pathogenic VHSV at 3 h post inoculation (hpi). Infection with the non-pathogenic isolate resulted in Gene Ontologies (GO) enrichment of terms such as immune response, cytokine-mediated signalling pathway, regulation of translational initiation, unfolded protein binding, and protein folding, and induced an over-representation of the p53, PPAR, and TGF-β signalling pathways. Inoculation with the pathogenic isolate resulted in the GO enrichment of terms related to lipid metabolism and the salmonella infection KEGG pathway involved in the rearrangement of the cytoskeleton. Antiviral response was evident at 12hpi in cells infected with the pathogenic isolate. Overall, the data showed a delay in the response of genes involved in immune responses and viral sensing in cells inoculated with the pathogenic isolate and suggest transcriptional shutoff and immune avoidance as a critical mechanism of pathogenicity in VHSV. These pathways offer opportunities to further understand and manage VHSV pathogenicity in rainbow trout.
Abstract.
Author URL.
Leung SK, Jeffries AR, Castanho I, Jordan BT, Moore K, Davies JP, Dempster EL, Bray NJ, O’Neill P, Tseng E, et al (2021). Full-length transcript sequencing of human and mouse cerebral cortex identifies widespread isoform diversity and alternative splicing. Cell Reports, 37(7), 110022-110022.
Millard RS, Bickley LK, Bateman KS, Farbos A, Minardi D, Moore K, Ross SH, Stentiford GD, Tyler CR, van Aerle R, et al (2021). Global mRNA and miRNA Analysis Reveal Key Processes in the Initial Response to Infection with WSSV in the Pacific Whiteleg Shrimp.
VIRUSES-BASEL,
13(6).
Author URL.
Hooper L, Jenkins TL, Griffiths AM, Moore KA, Stevens JR (2021). The complete mitochondrial genome of the pink sea fan, <i>Eunicella verrucosa</i> (Pallas, 1766). Mitochondrial DNA Part B, 6(11), 3309-3311.
Ducret V, Richards AJ, Videlier M, Scalvenzi T, Moore KA, Paszkiewicz K, Bonneaud C, Pollet N, Herrel A (2021). Transcriptomic analysis of the trade-off between endurance and burst-performance in the frog Xenopus allofraseri.
BMC Genomics,
22(1).
Abstract:
Transcriptomic analysis of the trade-off between endurance and burst-performance in the frog Xenopus allofraseri.
BACKGROUND: Variation in locomotor capacity among animals often reflects adaptations to different environments. Despite evidence that physical performance is heritable, the molecular basis of locomotor performance and performance trade-offs remains poorly understood. In this study we identify the genes, signaling pathways, and regulatory processes possibly responsible for the trade-off between burst performance and endurance observed in Xenopus allofraseri, using a transcriptomic approach. RESULTS: We obtained a total of about 121 million paired-end reads from Illumina RNA sequencing and analyzed 218,541 transcripts obtained from a de novo assembly. We identified 109 transcripts with a significant differential expression between endurant and burst performant individuals (FDR ≤ 0.05 and logFC ≥2), and blast searches resulted in 103 protein-coding genes. We found major differences between endurant and burst-performant individuals in the expression of genes involved in the polymerization and ATPase activity of actin filaments, cellular trafficking, proteoglycans and extracellular proteins secreted, lipid metabolism, mitochondrial activity and regulators of signaling cascades. Remarkably, we revealed transcript isoforms of key genes with functions in metabolism, apoptosis, nuclear export and as a transcriptional corepressor, expressed in either burst-performant or endurant individuals. Lastly, we find two up-regulated transcripts in burst-performant individuals that correspond to the expression of myosin-binding protein C fast-type (mybpc2). This suggests the presence of mybpc2 homoeologs and may have been favored by selection to permit fast and powerful locomotion. CONCLUSION: These results suggest that the differential expression of genes belonging to the pathways of calcium signaling, endoplasmic reticulum stress responses and striated muscle contraction, in addition to the use of alternative splicing and effectors of cellular activity underlie locomotor performance trade-offs. Ultimately, our transcriptomic analysis offers new perspectives for future analyses of the role of single nucleotide variants, homoeology and alternative splicing in the evolution of locomotor performance trade-offs.
Abstract.
Author URL.
2020
Leung SK, Jeffries A, Hannon E, Castanho I, Moore K, Murray TK, Ahmed Z, Collier DA, Mill J (2020). Characterization of mRNA isoform diversity in a transgenic model of tau pathology using targeted long‐read sequencing. Alzheimer's & Dementia, 16(S3).
Viana J, Wildman N, Hannon E, Farbos A, Neill PO, Moore K, van Aerle R, Paull G, Santos E, Mill J, et al (2020). Clozapine-induced transcriptional changes in the zebrafish brain.
NPJ Schizophr,
6(1).
Abstract:
Clozapine-induced transcriptional changes in the zebrafish brain.
Clozapine is an atypical antipsychotic medication that is used to treat schizophrenia patients who are resistant to other antipsychotic drugs. The molecular mechanisms mediating the effects of clozapine are not well understood and its use is often associated with severe side-effects. In this study, we exposed groups of wild-type zebrafish to two doses of clozapine ('low' (20 µg/L) and 'high' (70 µg/L)) over a 72-h period, observing dose-dependent effects on behaviour. Using RNA sequencing (RNA-seq) we identified multiple genes differentially expressed in the zebrafish brain following exposure to clozapine. Network analysis identified co-expression modules characterised by striking changes in module connectivity in response to clozapine, and these were enriched for regulatory pathways relevant to the etiology of schizophrenia. Our study highlights the utility of zebrafish as a model for assessing the molecular consequences of antipsychotic medications and identifies genomic networks potentially involved in schizophrenia.
Abstract.
Author URL.
Rodríguez-Martínez R, Leonard G, Milner DS, Sudek S, Conway M, Moore K, Hudson T, Mahé F, Keeling PJ, Santoro AE, et al (2020). Controlled sampling of ribosomally active protistan diversity in sediment-surface layers identifies putative players in the marine carbon sink.
ISME J,
14(4), 984-998.
Abstract:
Controlled sampling of ribosomally active protistan diversity in sediment-surface layers identifies putative players in the marine carbon sink.
Marine sediments are one of the largest carbon reservoir on Earth, yet the microbial communities, especially the eukaryotes, that drive these ecosystems are poorly characterised. Here, we report implementation of a sampling system that enables injection of reagents into sediments at depth, allowing for preservation of RNA in situ. Using the RNA templates recovered, we investigate the 'ribosomally active' eukaryotic diversity present in sediments close to the water/sediment interface. We demonstrate that in situ preservation leads to recovery of a significantly altered community profile. Using SSU rRNA amplicon sequencing, we investigated the community structure in these environments, demonstrating a wide diversity and high relative abundance of stramenopiles and alveolates, specifically: Bacillariophyta (diatoms), labyrinthulomycetes and ciliates. The identification of abundant diatom rRNA molecules is consistent with microscopy-based studies, but demonstrates that these algae can also be exported to the sediment as active cells as opposed to dead forms. We also observe many groups that include, or branch close to, osmotrophic-saprotrophic protists (e.g. labyrinthulomycetes and Pseudofungi), microbes likely to be important for detrital decomposition. The sequence data also included a diversity of abundant amplicon-types that branch close to the Fonticula slime moulds. Taken together, our data identifies additional roles for eukaryotic microbes in the marine carbon cycle; where putative osmotrophic-saprotrophic protists represent a significant active microbial-constituent of the upper sediment layer.
Abstract.
Author URL.
Mittell EA, Cobbold CA, Ijaz UZ, Kilbride EA, Moore KA, Mable BK (2020). Feral populations of Brassica oleracea along Atlantic coasts in western Europe.
Ecology and Evolution,
10(20), 11810-11825.
Abstract:
Feral populations of Brassica oleracea along Atlantic coasts in western Europe
There has been growing emphasis on the role that crop wild relatives might play in supporting highly selected agriculturally valuable species in the face of climate change. In species that were domesticated many thousands of years ago, distinguishing wild populations from escaped feral forms can be challenging, but reintroducing variation from either source could supplement current cultivated forms. For economically important cabbages (Brassicaceae: Brassica oleracea), “wild” populations occur throughout Europe but little is known about their genetic variation or potential as resources for breeding more resilient crop varieties. The main aim of this study was to characterize the population structure of geographically isolated wild cabbage populations along the coasts of the UK and Spain, including the Atlantic range edges. Double-digest restriction-site-associated DNA sequencing was used to sample individual cabbage genomes, assess the similarity of plants from 20 populations, and explore environment–genotype associations across varying climatic conditions. Interestingly, there were no indications of isolation by distance; several geographically close populations were genetically more distinct from each other than to distant populations. Furthermore, several distant populations shared genetic ancestry, which could indicate that they were established by escapees of similar source cultivars. However, there were signals of local adaptation to different environments, including a possible relationship between genetic diversity and soil pH. Overall, these results highlight wild cabbages in the Atlantic region as an important genetic resource worthy of further research into their relationship with existing crop varieties.
Abstract.
Sambles C, Venkatesan L, Shittu OM, Harrison J, Moore K, Tripathi L, Grant M, Warmington R, Studholme DJ (2020). Genome sequencing data for wild and cultivated bananas, plantains and abacá.
Data in Brief,
33Abstract:
Genome sequencing data for wild and cultivated bananas, plantains and abacá
We performed shotgun genome sequencing on a total of 19 different Musa genotypes including representatives of wild banana species Musa acuminata and M. balibisiana, allopolyploid bananas and plantains, Fe'i banana, pink banana (also known as hairy banana) and abacá (also known as hemp banana). We aligned sequence reads against a previously sequenced reference genome and assessed ploidy and, in the case of allopolyploids, the contributions of the a and B genomes; this provides important quality-assurance data about the taxonomic identities of the sequenced plant material. These data will be useful for phylogenetics, crop improvement, studies of the complex story of intergenomic recombination in AAB and ABB allotriploid bananas and plantains and can be integrated into resources such as the Banana Genome Hub.
Abstract.
Hamilton PB, Lockyer AE, Uren Webster TM, Studholme DJ, Paris JR, Baynes A, Nicol E, Dawson DA, Moore K, Farbos A, et al (2020). Investigation into Adaptation in Genes Associated with Response to Estrogenic Pollution in Populations of Roach (Rutilus rutilus) Living in English Rivers.
Environ Sci Technol,
54(24), 15935-15945.
Abstract:
Investigation into Adaptation in Genes Associated with Response to Estrogenic Pollution in Populations of Roach (Rutilus rutilus) Living in English Rivers.
Exposure of male fish to estrogenic substances from wastewater treatment works (WwTWs) results in feminization and reduced reproductive fitness. Nevertheless, self-sustaining populations of roach (Rutilus rutilus) inhabit river stretches polluted with estrogenic WwTW effluents. In this study, we examine whether such roach populations have evolved adaptations to tolerate estrogenic pollution by comparing frequency differences in single-nucleotide polymorphisms (SNPs) between populations sampled from rivers receiving either high- or low-level WwTW discharges. SNPs within 36 "candidate" genes, selected for their involvement in estrogenic responses, and 120 SNPs in reference genes were genotyped in 465 roaches. There was no evidence for selection in highly estrogen-dependent candidate genes, including those for the estrogen receptors, aromatases, and vitellogenins. The androgen receptor (ar) and cytochrome P450 1A genes were associated with large shifts in allele frequencies between catchments and in individual populations, but there is no clear link to estrogen pollution. Selection at ar in the effluent-dominated River Lee may have resulted from historical contamination with endocrine-disrupting pesticides. Critically, although our results suggest population-specific selection including at genes related to endocrine disruption, there was no strong evidence that the selection resulted from exposure to estrogen pollution.
Abstract.
Author URL.
Haque S, Ames RM, Moore K, Lee BP, Jeffery N, Harries LW (2020). Islet-expressed circular RNAs are associated with type 2 diabetes status in human primary islets and in peripheral blood.
BMC Med Genomics,
13(1).
Abstract:
Islet-expressed circular RNAs are associated with type 2 diabetes status in human primary islets and in peripheral blood.
BACKGROUND: Circular RNAs are non-coding RNA molecules with gene regulatory potential that have been associated with several human diseases. They are stable and present in the circulation, making them excellent candidates for biomarkers of disease. Despite their promise as biomarkers or future therapeutic targets, information on their expression and functionality in human pancreatic islets is a relatively unexplored subject. METHODS: Here we aimed to produce an enriched circRNAome profile for human pancreatic islets by CircleSeq, and to explore the relationship between circRNA expression, diabetes status, genotype at T2D risk loci and measures of glycaemia (insulin secretory index; SI and HbA1c) in human islet preparations from healthy control donors and donors with type 2 diabetes using ANOVA or linear regression as appropriate. We also assessed the effect of elevated glucose, cytokine and lipid and hypoxia on circRNA expression in the human beta cell line EndoC-βH1. RESULTS: We identified over 2600 circRNAs present in human islets. of the five most abundant circRNAs in human islets, four (circCIRBP, circZKSCAN, circRPH3AL and circCAMSAP1) demonstrated marked associations with diabetes status. CircCIRBP demonstrated an association with insulin secretory index in isolated human islets and circCIRBP and circRPH3AL displayed altered expression with elevated fatty acid in treated EndoC-βH1 cells. CircCAMSAP1 was also noted to be associated with T2D status in human peripheral blood. No associations between circRNA expression and genotype at T2D risk loci were identified in our samples. CONCLUSIONS: Our data suggest that circRNAs are abundantly expressed in human islets, and that some are differentially regulated in the islets of donors with type 2 diabetes. Some islet circRNAs are also expressed in peripheral blood and the expression of one, circCAMSAP1, correlates with diabetes status. These findings highlight the potential of circRNAs as biomarkers for T2D.
Abstract.
Author URL.
Sherman KD, Paris J, King RA, Moore KA, Dahlgren CP, Knowles LC, Stump K, Tyler CR, Stevens JR (2020). RAD-Seq Analysis and in situ Monitoring of Nassau Grouper Reveal Fine-Scale Population Structure and Origins of Aggregating Fish.
FRONTIERS IN MARINE SCIENCE,
7 Author URL.
Chaput DL, Bass D, Alam MM, Al Hasan N, Stentiford GD, van Aerle R, Moore K, Bignell JP, Haque MM, Tyler CR, et al (2020). The Segment Matters: Probable Reassortment of Tilapia Lake Virus (TiLV) Complicates Phylogenetic Analysis and Inference of Geographical Origin of New Isolate from Bangladesh.
Viruses,
12(3), 258-258.
Abstract:
The Segment Matters: Probable Reassortment of Tilapia Lake Virus (TiLV) Complicates Phylogenetic Analysis and Inference of Geographical Origin of New Isolate from Bangladesh
Tilapia lake virus (TiLV), a negative sense RNA virus with a 10 segment genome, is an emerging threat to tilapia aquaculture worldwide, with outbreaks causing over 90% mortality reported on several continents since 2014. Following a severe tilapia mortality event in July 2017, we confirmed the presence of TiLV in Bangladesh and obtained the near-complete genome of this isolate, BD-2017. Phylogenetic analysis of the concatenated 10 segment coding regions placed BD-2017 in a clade with the two isolates from Thailand, separate from the Israeli and South American isolates. However, phylogenetic analysis of individual segments gave conflicting results, sometimes clustering BD-2017 with one of the Israeli isolates, and splitting pairs of isolates from the same region. By comparing patterns of topological difference among segments of quartets of isolates, we showed that TiLV likely has a history of reassortment. Segments 5 and 6, in particular, appear to have undergone a relatively recent reassortment event involving Ecuador isolate EC-2012 and Israel isolate Til-4-2011. The phylogeny of TiLV isolates therefore depends on the segment sequenced. Our findings illustrate the need to exercise caution when using phylogenetic analysis to infer geographic origin and track the movement of TiLV, and we recommend using whole genomes wherever possible.
Abstract.
Castanho I, Murray TK, Hannon E, Jeffries A, Walker E, Laing E, Baulf H, Harvey J, Bradshaw L, Randall A, et al (2020). Transcriptional Signatures of Tau and Amyloid Neuropathology.
Cell Rep,
30(6), 2040-2054.e5.
Abstract:
Transcriptional Signatures of Tau and Amyloid Neuropathology.
Alzheimer's disease (AD) is associated with the intracellular aggregation of hyperphosphorylated tau and the accumulation of β-amyloid in the neocortex. We use transgenic mice harboring human tau (rTg4510) and amyloid precursor protein (J20) mutations to investigate transcriptional changes associated with the progression of tau and amyloid pathology. rTg4510 mice are characterized by widespread transcriptional differences in the entorhinal cortex with changes paralleling neuropathological burden across multiple brain regions. Differentially expressed transcripts overlap with genes identified in genetic studies of familial and sporadic AD. Systems-level analyses identify discrete co-expression networks associated with the progressive accumulation of tau that are enriched for genes and pathways previously implicated in AD pathology and overlap with co-expression networks identified in human AD cortex. Our data provide further evidence for an immune-response component in the accumulation of tau and reveal molecular pathways associated with the progression of AD neuropathology.
Abstract.
Author URL.
Mills LJ, Wilson JD, Lange A, Moore K, Henwood B, Knipe H, Chaput DL, Tyler CR (2020). Using molecular and crowd‐sourcing methods to assess breeding ground diet of a migratory brood parasite of conservation concern.
Journal of Avian Biology,
51(9).
Abstract:
Using molecular and crowd‐sourcing methods to assess breeding ground diet of a migratory brood parasite of conservation concern
Breeding ground food availability is critical to the survival and productivity of adult birds. The common cuckoo Cuculus canorus is a brood‐parasitic Afro‐Palearctic migrant bird exhibiting long‐term (breeding) population declines in many European countries. Variation in population trend between regions and habitats suggests breeding ground drivers such as adult food supply. However, cuckoo diet has not been studied in detail since before the most significant population declines in Europe began in the mid‐1980s. 20th century studies of cuckoo diet largely comprised field observations likely to carry bias towards larger prey taxa. Here we demonstrate the potential value of 1) using high‐throughput DNA sequencing of invertebrate prey in faeces to determine cuckoo diet with minimal bias towards large prey taxa, and 2) using crowd‐sourced digital photographs from across Britain to identify lepidopteran cuckoo prey taxa during recent years post‐decline (2005–2016). DNA analysis found a high frequency of Lepidoptera, including moths of family Lasiocampidae, prominent within the past literature, but also grasshoppers (Orthoptera) and flies (Diptera) that may be overlooked by field observation methodologies. The range of larval lepidopteran prey identified from photographs largely agreed with those previously documented, with potential signs of reduced diversity, and identities of key adult prey taxa were supported by molecular results. Notably, many identified cuckoo prey taxa have shown severe declines due to agricultural intensification, suggesting this has driven spatial patterns of cuckoo loss. Landscape‐scale, lowland rewilding interventions provide opportunities to understand the scale of reversal of previous agricultural intensification that may be necessary to restore prey populations sufficiently to permit recolonization by cuckoos.
Abstract.
Haque S, Ames RM, Moore K, Pilling LC, Peters LL, Bandinelli S, Ferrucci L, Harries LW (2020). circRNAs expressed in human peripheral blood are associated with human aging phenotypes, cellular senescence and mouse lifespan.
Geroscience,
42(1), 183-199.
Abstract:
circRNAs expressed in human peripheral blood are associated with human aging phenotypes, cellular senescence and mouse lifespan.
Circular RNAs (circRNAs) are an emerging class of non-coding RNA molecules that are thought to regulate gene expression and human disease. Despite the observation that circRNAs are known to accumulate in older organisms and have been reported in cellular senescence, their role in aging remains relatively unexplored. Here, we have assessed circRNA expression in aging human blood and followed up age-associated circRNA in relation to human aging phenotypes, mammalian longevity as measured by mouse median strain lifespan and cellular senescence in four different primary human cell types. We found that circRNAs circDEF6, circEP300, circFOXO3 and circFNDC3B demonstrate associations with parental longevity or hand grip strength in 306 subjects from the InCHIANTI study of aging, and furthermore, circFOXO3 and circEP300 also demonstrate differential expression in one or more human senescent cell types. Finally, four circRNAs tested showed evidence of conservation in mouse. Expression levels of one of these, circPlekhm1, was nominally associated with lifespan. These data suggest that circRNA may represent a novel class of regulatory RNA involved in the determination of aging phenotypes, which may show future promise as both biomarkers and future therapeutic targets for age-related disease.
Abstract.
Author URL.
2019
Viana J, Wildman N, Hannon E, Farbos A, O'Neill P, Moore K, Paszkiewicz K, van Aerle R, Paull G, Santos E, et al (2019). A ZEBRAFISH MODEL OF CLOZAPINE EXPOSURE: DRUG-INDUCED TRANSCRIPTOMIC CHANGES IN THE BRAIN.
Author URL.
Clark GC, Essex-Lopresti A, Moore KA, Williamson ED, Lukaszewski R, Paszkiewicz K, David J (2019). Common Host Responses in Murine Aerosol Models of Infection Caused by Highly Virulent Gram-Negative Bacteria from the Genera Burkholderia, Francisella and Yersinia.
Pathogens,
8(4).
Abstract:
Common Host Responses in Murine Aerosol Models of Infection Caused by Highly Virulent Gram-Negative Bacteria from the Genera Burkholderia, Francisella and Yersinia.
Highly virulent bacterial pathogens cause acute infections which are exceptionally difficult to treat with conventional antibiotic therapies alone. Understanding the chain of events that are triggered during an infection of a host has the potential to lead to new therapeutic strategies. For the first time, the transcriptomic responses within the lungs of Balb/C mice have been compared during an acute infection with the intracellular pathogens Burkholderia pseudomallei, Francisella tularensis and Yersinia pestis. Temporal changes were determined using RNAseq and a bioinformatics pipeline; expression of protein was also studied from the same sample. Collectively it was found that early transcriptomic responses within the infected host were associated with the (a) slowing down of critical cellular functions, (b) production of circulatory system components, (c) lung tissue integrity, and (d) intracellular regulatory processes. One common molecule was identified, Errfi1 (ErbB receptor feedback inhibitor 1); upregulated in response to all three pathogens and a potential novel marker of acute infection. Based upon the pro-inflammatory responses observed, we sought to synchronise each infection and report that 24 h p.i. of B. pseudomallei infection closely aligned with 48 h p.i. of infection with F. tularensis and Y. pestis. Post-transcriptional modulation of RANTES expression occurred across all pathogens, suggesting that these infections directly or indirectly modulate cell trafficking through chemokine expression/detection. Collectively, this unbiased NGS approach has provided an in-depth characterisation of the host transcriptome following infection with these highly virulent pathogens ultimately aiding in the development of host-directed therapies as adjuncts or alternatives to antibiotic treatment.
Abstract.
Author URL.
Warmington RJ, Kay W, Jeffries A, O'Neill P, Farbos A, Moore K, Bebber DP, Studholme DJ (2019). High-Quality Draft Genome Sequence of the Causal Agent of the Current Panama Disease Epidemic.
Microbiol Resour Announc,
8(36).
Abstract:
High-Quality Draft Genome Sequence of the Causal Agent of the Current Panama Disease Epidemic.
We present a high-quality draft genome assembly for Fusarium oxysporum f. sp. cubense tropical race 4 (Fusarium odoratissimum), assembled from PacBio reads and consisting of 15 contigs with a total assembly size of 48.59 Mb. This strain appears to belong to vegetative compatibility group complex 01213/16.
Abstract.
Author URL.
Tennant RK, Lux T, Sambles C, Kuhn N, Petticrew E, Oldfield R, Parker D, Hatton J, Moore K, Lee R, et al (2019). Palaeogenomics of the Hydrocarbon Producing Microalga Botryococcus braunii. Scientific Reports, 9
Castanho I, Murray T, Hannon E, Jeffries A, Walker E, Laing E, Baulf H, Harvey J, Randall A, Moore K, et al (2019). Transcriptional Signatures of Progressive Neuropathology in Transgenic Models of Tau and Amyloid Pathology.
Castanho I, Murray T, Hannon E, Jeffries A, Walker E, Laing E, Baulf H, Harvey J, Randall A, Moore K, et al (2019). Transcriptional Signatures of Progressive Neuropathology in Transgenic Models of Tau and Amyloid Pathology.
Essex-Lopresti A, David J, Moore K, Armstrong S, Auton P, Rutter S, Green C, Hiscox JA, Paszkiewicz KH, Clark GC, et al (2019). UNBIASED WHOLE GENOME SEQUENCE ANALYSIS OF THE MURINE TRANSCRIPTOME IN RESPONSE TO RICIN EXPOSURE VIA THE PULMONARY ROUTE.
Author URL.
Wideman JG, Monier A, Rodríguez-Martínez R, Leonard G, Cook E, Poirier C, Maguire F, Milner DS, Irwin NAT, Moore K, et al (2019). Unexpected mitochondrial genome diversity revealed by targeted single-cell genomics of heterotrophic flagellated protists. Nature Microbiology, 5(1), 154-165.
2018
Flaviani F, Schroeder DC, Lebret K, Balestreri C, Highfield AC, Schroeder JL, Thorpe SE, Moore K, Pasckiewicz K, Pfaff MC, et al (2018). Distinct oceanic microbiomes from viruses to protists located near the Antarctic Circumpolar current.
Frontiers in Microbiology,
9(JUL).
Abstract:
Distinct oceanic microbiomes from viruses to protists located near the Antarctic Circumpolar current
Microbes occupy diverse ecological niches and only through recent advances in next generation sequencing technologies have the true microbial diversity been revealed. Furthermore, lack of perceivable marine barriers to genetic dispersal (i.e. mountains or islands) has allowed the speculation that organisms that can be easily transported by currents and therefore proliferate everywhere. That said, ocean currents are now commonly being recognized as barriers for microbial dispersal. Here we analyzed samples collected from a total of six stations, four located in the Indian Ocean, and two in the Southern Ocean. Amplicon sequencing was used to characterize both prokaryotic and eukaryotic plankton communities, while shotgun sequencing was used for the combined environmental DNA (eDNA), microbial eDNA (meDNA), and viral fractions. We found that Cyanobacteria dominated the prokaryotic component in the South-West Indian Ocean, while γ-Proteobacteria dominated the South-East Indian Ocean. A combination of γ- and α-Proteobacteria dominated the Southern Ocean. Alveolates dominated almost exclusively the eukaryotic component, with variation in the ratio of Protoalveolata and Dinoflagellata depending on station. However, an increase in haptophyte relative abundance was observed in the Southern Ocean. Similarly, the viral fraction was dominated by members of the order Caudovirales across all stations; however, a higher presence of nucleocytoplasmic large DNA viruses (mainly chloroviruses and mimiviruses) was observed in the Southern Ocean. To our knowledge, this is the first that a statistical difference in the microbiome (from viruses to protists) between the subtropical Indian and Southern Oceans. We also show that not all phylotypes can be found everywhere, and that meDNA is not a suitable resource for monitoring aquatic microbial diversity.
Abstract.
Yemataw Z, Muzemil S, Ambachew D, Tripathi L, Tesfaye K, Chala A, Farbos A, O'Neill P, Moore K, Grant M, et al (2018). Genome sequence data from 17 accessions of Ensete ventricosum, a staple food crop for millions in Ethiopia.
Data in Brief,
18, 285-293.
Abstract:
Genome sequence data from 17 accessions of Ensete ventricosum, a staple food crop for millions in Ethiopia
We present raw sequence reads and genome assemblies derived from 17 accessions of the Ethiopian orphan crop plant enset (Ensete ventricosum (Welw.) Cheesman) using the Illumina HiSeq and MiSeq platforms. Also presented is a catalogue of single-nucleotide polymorphisms inferred from the sequence data at an average density of approximately one per kilobase of genomic DNA.
Abstract.
Morcrette H, Morgan MS, Farbos A, O'Neill P, Moore K, Titball RW, Studholme DJ (2018). Genome sequence of Staphylococcus aureus Ex1, isolated from a patient with spinal osteomyelitis.
Genome Announcements,
6(26).
Abstract:
Genome sequence of Staphylococcus aureus Ex1, isolated from a patient with spinal osteomyelitis
Here, we present the genome sequence of Staphylococcus aureus Ex1, isolated in 2015 from a patient with spinal osteomyelitis at the Royal Devon and Exeter Hospital in the United Kingdom. The availability of the Ex1 genome sequence provides a resource for studying the basis for spinal infection and horizontal gene transfer in S. aureus.
Abstract.
Castanho IMS, Murray TK, Farbos A, Lunnon K, Collier DA, Ahmed Z, Moore K, O'Neill MJ, Mill J (2018). P3‐123: MAPPING GENOMIC CONSEQUENCES OF ALZHEIMER'S DISEASE PATHOLOGY IN AMYLOID AND TAU MOUSE MODELS. Alzheimer's & Dementia, 14(7S_Part_21), p1114-p1115.
Smith A, Kaczmar A, Bamford RA, Smith C, Frustaci S, Kovacs-Simon A, O'Neill P, Moore K, Paszkiewicz K, Titball RW, et al (2018). The Culture Environment Influences Both Gene Regulation and Phenotypic Heterogeneity in Escherichia coli.
FRONTIERS IN MICROBIOLOGY,
9 Author URL.
2017
Yang ZR, Bullifent HL, Moore K, Paszkiewicz K, Saint RJ, Southern SJ, Champion OL, Senior NJ, Sarkar-Tyson M, Oyston PCF, et al (2017). A Noise Trimming and Positional Significance of Transposon Insertion System to Identify Essential Genes in Yersinia pestis.
Sci Rep,
7Abstract:
A Noise Trimming and Positional Significance of Transposon Insertion System to Identify Essential Genes in Yersinia pestis.
Massively parallel sequencing technology coupled with saturation mutagenesis has provided new and global insights into gene functions and roles. At a simplistic level, the frequency of mutations within genes can indicate the degree of essentiality. However, this approach neglects to take account of the positional significance of mutations - the function of a gene is less likely to be disrupted by a mutation close to the distal ends. Therefore, a systematic bioinformatics approach to improve the reliability of essential gene identification is desirable. We report here a parametric model which introduces a novel mutation feature together with a noise trimming approach to predict the biological significance of Tn5 mutations. We show improved performance of essential gene prediction in the bacterium Yersinia pestis, the causative agent of plague. This method would have broad applicability to other organisms and to the identification of genes which are essential for competitiveness or survival under a broad range of stresses.
Abstract.
Author URL.
Flaviani F, Schroeder DC, Balestreri C, Schroeder JL, Moore K, Paszkiewicz K, Pfaff MC, Rybicki EP (2017). A Pelagic Microbiome (Viruses to Protists) from a Small Cup of Seawater.
Viruses,
9(3).
Abstract:
A Pelagic Microbiome (Viruses to Protists) from a Small Cup of Seawater.
The aquatic microbiome is composed of a multi-phylotype community of microbes, ranging from the numerically dominant viruses to the phylogenetically diverse unicellular phytoplankton. They influence key biogeochemical processes and form the base of marine food webs, becoming food for secondary consumers. Due to recent advances in next-generation sequencing, this previously overlooked component of our hydrosphere is starting to reveal its true diversity and biological complexity. We report here that 250 mL of seawater is sufficient to provide a comprehensive description of the microbial diversity in an oceanic environment. We found that there was a dominance of the order Caudovirales (59%), with the family Myoviridae being the most prevalent. The families Phycodnaviridae and Mimiviridae made up the remainder of pelagic double-stranded DNA (dsDNA) virome. Consistent with this analysis, the Cyanobacteria dominate (52%) the prokaryotic diversity. While the dinoflagellates and their endosymbionts, the superphylum Alveolata dominates (92%) the microbial eukaryotic diversity. A total of 834 prokaryotic, 346 eukaryotic and 254 unique virus phylotypes were recorded in this relatively small sample of water. We also provide evidence, through a metagenomic-barcoding comparative analysis, that viruses are the likely source of microbial environmental DNA (meDNA). This study opens the door to a more integrated approach to oceanographic sampling and data analysis.
Abstract.
Author URL.
Senior NJ, Sasidharan K, Saint RJ, Scott AE, Sarkar-Tyson M, Ireland PM, Bullifent HL, Rong Yang Z, Moore K, Oyston PCF, et al (2017). An integrated computational-experimental approach reveals Yersinia pestis genes essential across a narrow or a broad range of environmental conditions.
BMC Microbiology,
17(1).
Abstract:
An integrated computational-experimental approach reveals Yersinia pestis genes essential across a narrow or a broad range of environmental conditions
Background: the World Health Organization has categorized plague as a re-emerging disease and the potential for Yersinia pestis to also be used as a bioweapon makes the identification of new drug targets against this pathogen a priority. Environmental temperature is a key signal which regulates virulence of the bacterium. The bacterium normally grows outside the human host at 28 °C. Therefore, understanding the mechanisms that the bacterium used to adapt to a mammalian host at 37 °C is central to the development of vaccines or drugs for the prevention or treatment of human disease. Results: Using a library of over 1 million Y. pestis CO92 random mutants and transposon-directed insertion site sequencing, we identified 530 essential genes when the bacteria were cultured at 28 °C. When the library of mutants was subsequently cultured at 37 °C we identified 19 genes that were essential at 37 °C but not at 28 °C, including genes which encode proteins that play a role in enabling functioning of the type III secretion and in DNA replication and maintenance. Using genome-scale metabolic network reconstruction we showed that growth conditions profoundly influence the physiology of the bacterium, and by combining computational and experimental approaches we were able to identify 54 genes that are essential under a broad range of conditions. Conclusions: Using an integrated computational-experimental approach we identify genes which are required for growth at 37 °C and under a broad range of environments may be the best targets for the development of new interventions to prevent or treat plague in humans.
Abstract.
Wiredu Boakye D, Jaroenlak P, Prachumwat A, Williams TA, Bateman K, Itsathiphaisarn O, Sritunyalucksan K, Paszkiewicz K, Moore KA, Stentiford G, et al (2017). Decay of the glycolytic pathway and adaptation to intranuclear parasitism within Enterocytozoonidae microsporidia. Environmental Microbiology, 19(5), 2077-2089.
Sambles C, Middelhaufe S, Soanes D, Kolak D, Lux T, Moore K, Matoušková P, Parker D, Lee R, Love J, et al (2017). Genome sequence of the oleaginous yeast Rhodotorula toruloides strain CGMCC 2.1609. Genomics Data, 13, 1-2.
Dunthorn M, Zufall RA, Chi J, Paszkiewicz K, Moore K, Mahé F (2017). Meiotic Genes in Colpodean Ciliates Support Secretive Sexuality.
Dunthorn M, Zufall RA, Chi J, Paszkiewicz K, Moore K, Mahé F (2017). Meiotic Genes in Colpodean Ciliates Support Secretive Sexuality.
Genome Biol Evol,
9(6), 1781-1787.
Abstract:
Meiotic Genes in Colpodean Ciliates Support Secretive Sexuality.
The putatively asexual Colpodean ciliates potentially pose a problem to macro-organismic theories of evolution. They are extremely ancient (although asexuality is thought to hasten extinction), and yet there is one apparently derived sexual species (implying an unlikely regain of a complex trait). If macro-organismic theories of evolution also broadly apply to microbial eukaryotes, though, then most or all of the colpodean ciliates should merely be secretively sexual. Here we show using de novo genome sequencing, that colpodean ciliates have the meiotic genes required for sex and these genes are under functional constraint. Along with these genomic data, we argue that these ciliates are sexual given the cytological observations of both micronuclei and macronuclei within their cells, and the behavioral observations of brief fusions as if the cells were mating. The challenge that colpodean ciliates pose is therefore not to evolutionary theory, but to our ability to induce microbial eukaryotic sex in the laboratory.
Abstract.
Author URL.
Tennant RK, Sambles CM, Diffey GE, Moore KA, Love J (2017). Metagenomic Analysis of Silage. Journal of Visualized Experiments, 119, e54936-e54936.
Sambles C, Moore K, Lux TM, Jones K, Littlejohn GR, Gouveia JD, Aves SJ, Studholme DJ, Lee R, Love J, et al (2017). Metagenomic analysis of the complex microbial consortium associated with cultures of the oil-rich alga<i>Botryococcus braunii</i>. MicrobiologyOpen, 6(4), e00482-e00482.
Mitchelmore PJ, Randall J, Bull MJ, Moore KA, O'Neill PA, Paszkiewicz K, Mahenthiralingam E, Scotton CJ, Sheldon CD, Withers NJ, et al (2017). Molecular epidemiology of Pseudomonas aeruginosa in an unsegregated bronchiectasis cohort sharing hospital facilities with a cystic fibrosis cohort.
ThoraxAbstract:
Molecular epidemiology of Pseudomonas aeruginosa in an unsegregated bronchiectasis cohort sharing hospital facilities with a cystic fibrosis cohort.
While Pseudomonas aeruginosa (PA) cross-infection is well documented among patients with cystic fibrosis (CF), the equivalent risk among patients with non-CF bronchiectasis (NCFB) is unclear, particularly those managed alongside patients with CF. We performed analysis of PA within a single centre that manages an unsegregated NCFB cohort alongside a segregated CF cohort. We found no evidence of cross-infection between the two cohorts or within the segregated CF cohort. However, within the unsegregated NCFB cohort, evidence of cross-infection was found between three (of 46) patients. While we do not presently advocate any change in the management of our NCFB cohort, longitudinal surveillance is clearly warranted.
Abstract.
Author URL.
2016
Williams TA, Nakjang S, Campbell SE, Freeman MA, Eydal M, Moore K, Hirt RP, Embley TM, Williams BAP (2016). A recent whole-genome duplication divides populations of a globally-distributed microsporidian.
Molecular Biology and EvolutionAbstract:
A recent whole-genome duplication divides populations of a globally-distributed microsporidian.
The Microsporidia are a major group of intracellular fungi and important parasites of animals including insects, fish, and immunocompromised humans. Microsporidian genomes have undergone extreme reductive evolution but there are major differences in genome size and structure within the group: some are prokaryote-like in size and organisation (
Abstract.
Gal C, Murton HE, Subramanian L, Whale AJ, Moore KM, Paszkiewicz K, Codlin S, Bähler J, Creamer KM, Partridge JF, et al (2016). Abo1, a conserved bromodomain AAA-ATPase, maintains global nucleosome occupancy and organisation.
EMBO Rep,
17(1), 79-93.
Abstract:
Abo1, a conserved bromodomain AAA-ATPase, maintains global nucleosome occupancy and organisation.
Maintenance of the correct level and organisation of nucleosomes is crucial for genome function. Here, we uncover a role for a conserved bromodomain AAA-ATPase, Abo1, in the maintenance of nucleosome architecture in fission yeast. Cells lacking abo1(+) experience both a reduction and mis-positioning of nucleosomes at transcribed sequences in addition to increased intragenic transcription, phenotypes that are hallmarks of defective chromatin re-establishment behind RNA polymerase II. Abo1 is recruited to gene sequences and associates with histone H3 and the histone chaperone FACT. Furthermore, the distribution of Abo1 on chromatin is disturbed by impaired FACT function. The role of Abo1 extends to some promoters and also to silent heterochromatin. Abo1 is recruited to pericentromeric heterochromatin independently of the HP1 ortholog, Swi6, where it enforces proper nucleosome occupancy. Consequently, loss of Abo1 alleviates silencing and causes elevated chromosome mis-segregation. We suggest that Abo1 provides a histone chaperone function that maintains nucleosome architecture genome-wide.
Abstract.
Author URL.
Jones KJ, Moore K, Sambles C, Love J, Studholme DJ, Aves SJ (2016). Draft Genome Sequences of Achromobacter piechaudii GCS2, Agrobacterium sp. Strain SUL3, Microbacterium sp. Strain GCS4, Shinella sp. Strain GWS1, and Shinella sp. Strain SUS2 Isolated from Consortium with the Hydrocarbon-Producing Alga Botryococcus braunii.
Genome Announc,
4(1).
Abstract:
Draft Genome Sequences of Achromobacter piechaudii GCS2, Agrobacterium sp. Strain SUL3, Microbacterium sp. Strain GCS4, Shinella sp. Strain GWS1, and Shinella sp. Strain SUS2 Isolated from Consortium with the Hydrocarbon-Producing Alga Botryococcus braunii.
A variety of bacteria associate with the hydrocarbon-producing microalga Botryococcus braunii, some of which may influence its growth. We report here the genome sequences for Achromobacter piechaudii GCS2, Agrobacterium sp. strain SUL3, Microbacterium sp. strain GCS4, and Shinella sp. strains GWS1 and SUS2, isolated from a laboratory culture of B. braunii, race B, strain Guadeloupe.
Abstract.
Author URL.
Laver TW, Caswell RC, Moore KA, Poschmann J, Johnson MB, Owens MM, Ellard S, Paszkiewicz KH, Weedon MN (2016). Pitfalls of haplotype phasing from amplicon-based long-read sequencing.
Sci Rep,
6Abstract:
Pitfalls of haplotype phasing from amplicon-based long-read sequencing.
The long-read sequencers from Pacific Bioscience (PacBio) and Oxford Nanopore Technologies (ONT) offer the opportunity to phase mutations multiple kilobases apart directly from sequencing reads. In this study, we used long-range PCR with ONT and PacBio sequencing to phase two variants 9 kb apart in the RET gene. We also re-analysed data from a recent paper which had apparently successfully used ONT to phase clinically important haplotypes at the CYP2D6 and HLA loci. From these analyses, we demonstrate PCR-chimera formation during PCR amplification and reference alignment bias are pitfalls that need to be considered when attempting to phase variants using amplicon-based long-read sequencing technologies. These methodological pitfalls need to be avoided if the opportunities provided by long-read sequencers are to be fully exploited.
Abstract.
Author URL.
Shaw S, Le Cocq K, Paszkiewicz K, Moore K, Winsbury R, Studholme D, Salmon D, Thornton CR, Grant MR (2016). Transcriptional reprogramming underpins enhanced plant
growth promotion by the biocontrol fungus Trichoderma hamatum GD12
during antagonistic interactions with Sclerotinia sclerotiorum in
soil.
Molecular Plant Pathology,
17, 1425-1441.
Abstract:
Transcriptional reprogramming underpins enhanced plant
growth promotion by the biocontrol fungus Trichoderma hamatum GD12
during antagonistic interactions with Sclerotinia sclerotiorum in
soil
The free-living soil fungus Trichoderma hamatum strain GD12 is notable amongst Trichoderma strains in both controlling plant diseases and in stimulating plant growth, a property enhanced during its antagonistic interactions with pathogens in soil. These attributes, alongside its markedly expanded genome and proteome compared to other biocontrol and plant growth promoting Trichoderma strains, imply a rich potential for sustainable alternatives to synthetic pesticides and fertilisers for controlling plant disease and increasing yields. The purpose of this study was to investigate the transcriptional responses of GD12 underpinning its biocontrol and plant growth promotion capabilities during antagonistic interactions with the pathogen Sclerotinia sclerotiorum in soil. Using an extensive mRNA-seq study capturing different time points during the pathogen-antagonist interaction in soil, we show that dynamic and biphasic signatures in the GD12 transcriptome underpin its biocontrol and plant (lettuce) growth promotional activities. Functional predictions of differentially expressed genes demonstrate the enrichment of transcripts encoding proteins involved in transportation and oxidation-reduction reactions during both processes and an over-representation of siderophores. We identify a biphasic response during biocontrol characterised by a significant induction of transcripts encoding small-secreted cysteine rich proteins, secondary metabolite producing gene clusters and genes unique to GD12. These data support the hypothesis that Sclerotinia biocontrol is mediated by the synthesis and secretion of antifungal compounds and that GD12's unique reservoir of uncharacterised genes is actively recruited during effective biological control of a plurivorous plant pathogen.
Abstract.
2015
Price SJ, Garner TWJ, Balloux F, Ruis C, Paszkiewicz KH, Moore K, Griffiths AGF (2015). A de novo Assembly of the Common Frog (Rana temporaria) Transcriptome and Comparison of Transcription Following Exposure to Ranavirus and Batrachochytrium dendrobatidis.
PLoS One,
10(6).
Abstract:
A de novo Assembly of the Common Frog (Rana temporaria) Transcriptome and Comparison of Transcription Following Exposure to Ranavirus and Batrachochytrium dendrobatidis.
Amphibians are experiencing global declines and extinctions, with infectious diseases representing a major factor. In this study we examined the transcriptional response of metamorphic hosts (common frog, Rana temporaria) to the two most important amphibian pathogens: Batrachochytrium dendrobatidis (Bd) and Ranavirus. We found strong up-regulation of a gene involved in the adaptive immune response (AP4S1) at four days post-exposure to both pathogens. We detected a significant transcriptional response to Bd, covering the immune response (innate and adaptive immunity, complement activation, and general inflammatory responses), but relatively little transcriptional response to Ranavirus. This may reflect the higher mortality rates found in wild common frogs infected with Ranavirus as opposed to Bd. These data provide a valuable genomic resource for the amphibians, contribute insight into gene expression changes after pathogen exposure, and suggest potential candidate genes for future host-pathogen research.
Abstract.
Author URL.
Laver T, Harrison J, O'Neill PA, Moore K, Farbos A, Paszkiewicz K, Studholme DJ (2015). Assessing the performance of the Oxford Nanopore Technologies MinION.
Biomolecular Detection and Quantification,
3, 1-8.
Abstract:
Assessing the performance of the Oxford Nanopore Technologies MinION
The Oxford Nanopore Technologies (ONT) MinION is a new sequencing technology that potentially offers read lengths of tens of kilobases (kb) limited only by the length of DNA molecules presented to it. The device has a low capital cost, is by far the most portable DNA sequencer available, and can produce data in real-time. It has numerous prospective applications including improving genome sequence assemblies and resolution of repeat-rich regions. Before such a technology is widely adopted, it is important to assess its performance and limitations in respect of throughput and accuracy. In this study we assessed the performance of the MinION by re-sequencing three bacterial genomes, with very different nucleotide compositions ranging from 28.6% to 70.7%; the high G. +. C strain was underrepresented in the sequencing reads. We estimate the error rate of the MinION (after base calling) to be 38.2%. Mean and median read lengths were 2. kb and 1. kb respectively, while the longest single read was 98. kb. The whole length of a 5. kb rRNA operon was covered by a single read. As the first nanopore-based single molecule sequencer available to researchers, the MinION is an exciting prospect; however, the current error rate limits its ability to compete with existing sequencing technologies, though we do show that MinION sequence reads can enhance contiguity of de novo assembly when used in conjunction with Illumina MiSeq data.
Abstract.
Masood N, Moore K, Farbos A, Paszkiewicz K, Dickins B, McNally A, Forsythe S (2015). Genomic dissection of the 1994 Cronobacter sakazakii outbreak in a French neonatal intensive care unit.
BMC Genomics,
16Abstract:
Genomic dissection of the 1994 Cronobacter sakazakii outbreak in a French neonatal intensive care unit.
BACKGROUND: Cronobacter sakazakii is a member of the genus Cronobacter that has frequently been isolated from powdered infant formula (PIF) and linked with rare but fatal neonatal infections such as meningitis and necrotising enterocolitis. The Cronobacter MLST scheme has reported over 400 sequence types and 42 clonal complexes; however C. sakazakii clonal complex 4 (CC4) has been linked strongly with neonatal infections, especially meningitis. There have been a number of reported Cronobacter outbreaks over the last three decades. The largest outbreak of C. sakazakii was in a neonatal intensive care unit (NICU) in France (1994) that lasted over 3 months and claimed the lives of three neonates. The present study used whole genome sequencing data of 26 isolates obtained from this outbreak to reveal their relatedness. This study is first of its kind to use whole genome sequencing data to analyse a Cronobacter outbreak. METHODS: Whole genome sequencing data was generated for 26 C. sakazakii isolates on the Illumina MiSeq platform. The whole genome phylogeny was determined using Mugsy and RaxML. SNP calls were determined using SMALT and SAMtools, and filtered using VCFtools. RESULTS: the whole genome phylogeny suggested 3 distant clusters of C. sakazakii isolates were associated with the outbreak. SNP typing and phylogeny indicate the source of the C. sakazakii could have been from extrinsic contamination of reconstituted infant formula from the NICU environment and personnel. This pool of strains would have contributed to the prolonged duration of the outbreak, which was up to 3 months. Furthermore 3 neonates were co-infected with C. sakazakii from two different genotype clusters. CONCLUSION: the genomic investigation revealed the outbreak consisted of an heterogeneous population of C. sakazakii isolates. The source of the outbreak was not identified, but probably was due to environmental and personnel reservoirs resulting in extrinsic contamination of the neonatal feeds. It also indicated that C. sakazakii isolates from different genotype clusters have the ability to co-infect neonates.
Abstract.
Author URL.
Uren Webster TM, Shears JA, Moore K, Santos EM (2015). Identification of conserved hepatic transcriptomic responses to 17β-estradiol using high-throughput sequencing in brown trout.
Physiol Genomics,
47(9), 420-431.
Abstract:
Identification of conserved hepatic transcriptomic responses to 17β-estradiol using high-throughput sequencing in brown trout.
Estrogenic chemicals are major contaminants of surface waters and can threaten the sustainability of natural fish populations. Characterization of the global molecular mechanisms of toxicity of environmental contaminants has been conducted primarily in model species rather than species with limited existing transcriptomic or genomic sequence information. We aimed to investigate the global mechanisms of toxicity of an endocrine disrupting chemical of environmental concern [17β-estradiol (E2)] using high-throughput RNA sequencing (RNA-Seq) in an environmentally relevant species, brown trout (Salmo trutta). We exposed mature males to measured concentrations of 1.94, 18.06, and 34.38 ng E2/l for 4 days and sequenced three individual liver samples per treatment using an Illumina HiSeq 2500 platform. Exposure to 34.4 ng E2/L resulted in 2,113 differentially regulated transcripts (FDR < 0.05). Functional analysis revealed upregulation of processes associated with vitellogenesis, including lipid metabolism, cellular proliferation, and ribosome biogenesis, together with a downregulation of carbohydrate metabolism. Using real-time quantitative PCR, we validated the expression of eight target genes and identified significant differences in the regulation of several known estrogen-responsive transcripts in fish exposed to the lower treatment concentrations (including esr1 and zp2.5). We successfully used RNA-Seq to identify highly conserved responses to estrogen and also identified some estrogen-responsive transcripts that have been less well characterized, including nots and tgm2l. These results demonstrate the potential application of RNA-Seq as a valuable tool for assessing mechanistic effects of pollutants in ecologically relevant species for which little genomic information is available.
Abstract.
Author URL.
MacGregor DR, Kendall SL, Florance H, Fedi F, Moore K, Paszkiewicz K, Smirnoff N, Penfield S (2015). Seed production temperature regulation of primary dormancy occurs through control of seed coat phenylpropanoid metabolism.
New Phytol,
205(2), 642-652.
Abstract:
Seed production temperature regulation of primary dormancy occurs through control of seed coat phenylpropanoid metabolism.
Environmental changes during seed production are important drivers of lot-to-lot variation in seed behaviour and enable wild species to time their life history with seasonal cues. Temperature during seed set is the dominant environmental signal determining the depth of primary dormancy, although the mechanisms though which temperature changes impart changes in dormancy state are still only partly understood. We used molecular, genetic and biochemical techniques to examine the mechanism through which temperature variation affects Arabidopsis thaliana seed dormancy. Here we show that, in Arabidopsis, low temperatures during seed maturation result in an increase in phenylpropanoid gene expression in seeds and that this correlates with higher concentrations of seed coat procyanidins. Lower maturation temperatures cause differences in coat permeability to tetrazolium, and mutants with increased seed coat permeability and/or low procyanidin concentrations are less able to enter strongly dormant states after exposure to low temperatures during seed maturation. Our data show that maternal temperature signalling regulates seed coat properties, and this is an important pathway through which the environmental signals control primary dormancy depth.
Abstract.
Author URL.
Gal C, Moore KM, Paszkiewicz K, Kent NA, Whitehall SK (2015). The impact of the HIRA histone chaperone upon global nucleosome architecture.
Cell Cycle,
14(1), 123-134.
Abstract:
The impact of the HIRA histone chaperone upon global nucleosome architecture.
HIRA is an evolutionarily conserved histone chaperone that mediates replication-independent nucleosome assembly and is important for a variety of processes such as cell cycle progression, development, and senescence. Here we have used a chromatin sequencing approach to determine the genome-wide contribution of HIRA to nucleosome organization in Schizosaccharomyces pombe. Cells lacking HIRA experience a global reduction in nucleosome occupancy at gene sequences, consistent with the proposed role for HIRA in chromatin reassembly behind elongating RNA polymerase II. In addition, we find that at its target promoters, HIRA commonly maintains the full occupancy of the -1 nucleosome. HIRA does not affect global chromatin structure at replication origins or in rDNA repeats but is required for nucleosome occupancy in silent regions of the genome. Nucleosome organization associated with the heterochromatic (dg-dh) repeats located at the centromere is perturbed by loss of HIRA function and furthermore HIRA is required for normal nucleosome occupancy at Tf2 LTR retrotransposons. Overall, our data indicate that HIRA plays an important role in maintaining nucleosome architecture at both euchromatic and heterochromatic loci.
Abstract.
Author URL.
Alkeskas A, Ogrodzki P, Saad M, Masood N, Rhoma NR, Moore K, Farbos A, Paszkiewicz K, Forsythe S (2015). The molecular characterisation of Escherichia coli K1 isolated from neonatal nasogastric feeding tubes.
BMC Infect Dis,
15Abstract:
The molecular characterisation of Escherichia coli K1 isolated from neonatal nasogastric feeding tubes.
BACKGROUND: the most common cause of Gram-negative bacterial neonatal meningitis is E. coli K1. It has a mortality rate of 10-15 %, and neurological sequelae in 30-50 % of cases. Infections can be attributable to nosocomial sources, however the pre-colonisation of enteral feeding tubes has not been considered as a specific risk factor. METHODS: Thirty E. coli strains, which had been isolated in an earlier study, from the residual lumen liquid and biofilms of neonatal nasogastric feeding tubes were genotyped using pulsed-field gel electrophoresis, and 7-loci multilocus sequence typing. Potential pathogenicity and biofilm associated traits were determined using specific PCR probes, genome analysis, and in vitro tissue culture assays. RESULTS: the E. coli strains clustered into five pulsotypes, which were genotyped as sequence types (ST) 95, 73, 127, 394 and 2076 (Achman scheme). The extra-intestinal pathogenic E. coli (ExPEC) phylogenetic group B2 ST95 serotype O1:K1:NM strains had been isolated over a 2 week period from 11 neonates who were on different feeding regimes. The E. coli K1 ST95 strains encoded for various virulence traits associated with neonatal meningitis and extracellular matrix formation. These strains attached and invaded intestinal, and both human and rat brain cell lines, and persisted for 48 h in U937 macrophages. E. coli STs 73, 394 and 2076 also persisted in macrophages and invaded Caco-2 and human brain cells, but only ST394 invaded rat brain cells. E. coli ST127 was notable as it did not invade any cell lines. CONCLUSIONS: Routes by which E. coli K1 can be disseminated within a neonatal intensive care unit are uncertain, however the colonisation of neonatal enteral feeding tubes may be one reservoir source which could constitute a serious health risk to neonates following ingestion.
Abstract.
Author URL.
Watson AK, Williams TA, Williams BAP, Moore KA, Hirt RP, Embley TM (2015). Transcriptomic profiling of host-parasite interactions in the microsporidian Trachipleistophora hominis.
BMC GenomicsAbstract:
Transcriptomic profiling of host-parasite interactions in the microsporidian Trachipleistophora hominis
© 2015 Watson et al. Background: Trachipleistophora hominis was isolated from an HIV/AIDS patient and is a member of a highly successful group of obligate intracellular parasites. Methods: Here we have investigated the evolution of the parasite and the interplay between host and parasite gene expression using transcriptomics of T. hominis-infected rabbit kidney cells. Results: T. hominis has about 30 % more genes than small-genome microsporidians. Highly expressed genes include those involved in growth, replication, defence against oxidative stress, and a large fraction of uncharacterised genes. Chaperones are also highly expressed and may buffer the deleterious effects of the large number of non-synonymous mutations observed in essential T. hominis genes. Host expression suggests a general cellular shutdown upon infection, but ATP, amino sugar and nucleotide sugar production appear enhanced, potentially providing the parasite with substrates it cannot make itself. Expression divergence of duplicated genes, including transporters used to acquire host metabolites, demonstrates ongoing functional diversification during microsporidian evolution. We identified overlapping transcription at more than 100 loci in the sparse T. hominis genome, demonstrating that this feature is not caused by genome compaction. The detection of additional transposons of insect origin strongly suggests that the natural host for T. hominis is an insect. Conclusions: Our results reveal that the evolution of contemporary microsporidian genomes is highly dynamic and innovative. Moreover, highly expressed T. hominis genes of unknown function include a cohort that are shared among all microsporidians, indicating that some strongly conserved features of the biology of these enormously successful parasites remain uncharacterised.
Abstract.
2014
Harrison J, Moore K, Paszkiewicz K, Jones T, Grant M, Ambacheew D, Muzemil S, Studholme D (2014). A Draft Genome Sequence for Ensete ventricosum, the Drought-Tolerant “Tree Against Hunger”.
Agronomy,
4, 13-33.
Abstract:
A Draft Genome Sequence for Ensete ventricosum, the Drought-Tolerant “Tree Against Hunger”
We present a draft genome sequence for enset (Ensete ventricosum) available via the Sequence Read Archive (accession number SRX202265) and GenBank (accession number AMZH01. Enset feeds 15 million people in Ethiopia, but is arguably the least studied African crop. Our sequence data suggest a genome size of approximately 547 megabases, similar to the 523-megabase genome of the closely related banana (Musa acuminata). At least 1.8% of the annotated M. acuminata genes are not conserved in E. ventricosum. Furthermore, enset contains genes not present in banana, including reverse transcriptases and virus-like sequences as well as a homolog of the RPP8-like resistance gene. We hope that availability of genome-wide sequence data will stimulate and accelerate research on this important but neglected crop.
Abstract.
Heintzman PD, Elias SA, Moore K, Paszkiewicz K, Barnes I (2014). Characterizing DNA preservation in degraded specimens of Amara alpina (Carabidae: Coleoptera).
Mol Ecol Resour,
14(3), 606-615.
Abstract:
Characterizing DNA preservation in degraded specimens of Amara alpina (Carabidae: Coleoptera).
DNA preserved in degraded beetle (Coleoptera) specimens, including those derived from dry-stored museum and ancient permafrost-preserved environments, could provide a valuable resource for researchers interested in species and population histories over timescales from decades to millenia. However, the potential of these samples as genetic resources is currently unassessed. Here, using Sanger and Illumina shotgun sequence data, we explored DNA preservation in specimens of the ground beetle Amara alpina, from both museum and ancient environments. Nearly all museum specimens had amplifiable DNA, with the maximum amplifiable fragment length decreasing with age. Amplification of DNA was only possible in 45% of ancient specimens. Preserved mitochondrial DNA fragments were significantly longer than those of nuclear DNA in both museum and ancient specimens. Metagenomic characterization of extracted DNA demonstrated that parasite-derived sequences, including Wolbachia and Spiroplasma, are recoverable from museum beetle specimens. Ancient DNA extracts contained beetle DNA in amounts comparable to museum specimens. Overall, our data demonstrate that there is great potential for both museum and ancient specimens of beetles in future genetic studies, and we see no reason why this would not be the case for other orders of insect.
Abstract.
Author URL.
Masood N, Jackson E, Moore K, Farbos A, Paszkiewicz K, Dickins B, McNally A, Forsythe S (2014). Draft Genome Sequence of "Candidatus Cronobacter colletis" NCTC 14934T, a New Species in the Genus Cronobacter.
Genome Announc,
2(3).
Abstract:
Draft Genome Sequence of "Candidatus Cronobacter colletis" NCTC 14934T, a New Species in the Genus Cronobacter.
Members of the Cronobacter genus are associated with serious infections in neonates. This is the first report of the draft genome sequence for the newly proposed species Cronobacter colletis.
Abstract.
Author URL.
Bertolini C, van Aerle R, Lampis S, Moore KA, Paszkiewicz K, Butler CS, Vallini G, van der Giezen M (2014). Draft Genome Sequence of Stenotrophomonas maltophilia SeITE02, a Gammaproteobacterium Isolated from Selenite-Contaminated Mining Soil.
Genome Announc,
2(3).
Abstract:
Draft Genome Sequence of Stenotrophomonas maltophilia SeITE02, a Gammaproteobacterium Isolated from Selenite-Contaminated Mining Soil.
Stenotrophomonas maltophilia strain SeITE02 was isolated from the rhizosphere of the selenium-hyperaccumulating legume Astragalus bisculcatus. In this report, we provide the 4.56-Mb draft genome sequence of S. maltophilia SeITE02, a gammaproteobacterium that can withstand high concentrations of selenite and reduce these to elemental selenium.
Abstract.
Author URL.
Chen M, MacGregor DR, Dave A, Florance H, Moore K, Paszkiewicz K, Smirnoff N, Graham IA, Penfield S (2014). Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year.
Proc Natl Acad Sci U S A,
111(52), 18787-18792.
Abstract:
Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year.
Seasonal behavior is important for fitness in temperate environments but it is unclear how progeny gain their initial seasonal entrainment. Plants use temperature signals to measure time of year, and changes to life histories are therefore an important consequence of climate change. Here we show that in Arabidopsis the current and prior temperature experience of the mother plant is used to control germination of progeny seeds, via the activation of the florigen Flowering Locus T (FT) in fruit tissues. We demonstrate that maternal past and current temperature experience are transduced to the FT locus in silique phloem. In turn, FT controls seed dormancy through inhibition of proanthocyanidin synthesis in fruits, resulting in altered seed coat tannin content. Our data reveal that maternal temperature history is integrated through FT in the fruit to generate a metabolic signal that entrains the behavior of progeny seeds according to time of year.
Abstract.
Author URL.
Paszkiewicz KH, Farbos A, O'Neill P, Moore K (2014). Quality control on the frontier.
Front Genet,
5Abstract:
Quality control on the frontier.
In the world of high-throughput sequencing there are numerous challenges to effective data quality control. There are no single quality metrics which are appropriate in all conditions. Here we detail the different open source software used at the Exeter Sequencing Service to provide generic quality control information, as well as more specific metrics for genomic and transcriptomic libraries run on Illumina platforms.
Abstract.
Author URL.
Milne SW, Cheetham J, Lloyd D, Shaw S, Moore K, Paszkiewicz KH, Aves SJ, Bates S (2014). Role of Candida albicans Tem1 in mitotic exit and cytokinesis.
Fungal Genet Biol,
69, 84-95.
Abstract:
Role of Candida albicans Tem1 in mitotic exit and cytokinesis.
Candida albicans demonstrates three main growth morphologies: yeast, pseudohyphal and true hyphal forms. Cell separation is distinct in these morphological forms and the process of separation is closely linked to the completion of mitosis and cytokinesis. In Saccharomyces cerevisiae the small GTPase Tem1 is known to initiate the mitotic exit network, a signalling pathway involved in signalling the end of mitosis and initiating cytokinesis and cell separation. Here we have characterised the role of Tem1 in C. albicans, and demonstrate that it is essential for mitotic exit and cytokinesis, and that this essential function is signalled through the kinase Cdc15. Cells depleted of Tem1 displayed highly polarised growth but ultimately failed to both complete cytokinesis and re-enter the cell cycle following nuclear division. Consistent with its role in activating the mitotic exit network Tem1 localises to spindle pole bodies in a cell cycle-dependent manner. Ultimately, the mitotic exit network in C. albicans appears to co-ordinate the sequential processes of mitotic exit, cytokinesis and cell separation.
Abstract.
Author URL.
2013
Maruyama H, Harwood JC, Moore KM, Paszkiewicz K, Durley SC, Fukushima H, Atomi H, Takeyasu K, Kent NA (2013). An alternative beads-on-a-string chromatin architecture in Thermococcus kodakarensis.
EMBO Rep,
14(8), 711-717.
Abstract:
An alternative beads-on-a-string chromatin architecture in Thermococcus kodakarensis.
We have applied chromatin sequencing technology to the euryarchaeon Thermococcus kodakarensis, which is known to possess histone-like proteins. We detect positioned chromatin particles of variable sizes associated with lengths of DNA differing as multiples of 30 bp (ranging from 30 bp to >450 bp) consistent with formation from dynamic polymers of the archaeal histone dimer. T. kodakarensis chromatin particles have distinctive underlying DNA sequence suggesting a genomic particle-positioning code and are excluded from gene-regulatory DNA suggesting a functional organization. Beads-on-a-string chromatin is therefore conserved between eukaryotes and archaea but can derive from deployment of histone-fold proteins in a variety of multimeric forms.
Abstract.
Author URL.
Masood N, Moore K, Farbos A, Hariri S, Block C, Paszkiewicz K, Dickins B, McNally A, Forsythe S (2013). Draft Genome Sequence of a Meningitic Isolate of Cronobacter sakazakii Clonal Complex 4, Strain 8399.
Genome Announc,
1(5).
Abstract:
Draft Genome Sequence of a Meningitic Isolate of Cronobacter sakazakii Clonal Complex 4, Strain 8399.
The Cronobacter sakazakii clonal lineage defined as clonal complex 4 (CC4), composed of nine sequence types, is associated with severe cases of neonatal meningitis. To date, only closely related C. sakazakii sequence type 4 (ST4) strains have been sequenced. C. sakazakii strain 8399, isolated from a case of neonatal meningitis, was sequenced as the first non-ST4 C. sakazakii strain.
Abstract.
Author URL.
Masood N, Moore K, Farbos A, Hariri S, Paszkiewicz K, Dickins B, McNally A, Forsythe S (2013). Draft Genome Sequence of the Earliest Cronobacter sakazakii Sequence Type 4 Strain, NCIMB 8272.
Genome Announc,
1(5).
Abstract:
Draft Genome Sequence of the Earliest Cronobacter sakazakii Sequence Type 4 Strain, NCIMB 8272.
The Cronobacter sakazakii clonal lineage defined as sequence type 4 (ST4) is associated with severe cases of neonatal meningitis and persistence in powdered infant formula. For genome sequencing of the earliest deposited culture collection strain of Cronobacter sakazakii ST4, we used the strain NCIMB 8272, originally isolated from milk powder in 1950.
Abstract.
Author URL.
Masood N, Moore K, Farbos A, Hariri S, Paszkiewicz K, Dickins B, McNally A, Forsythe S (2013). Draft Genome Sequences of Three Newly Identified Species in the Genus Cronobacter, C. helveticus LMG23732T, C. pulveris LMG24059, and C. zurichensis LMG23730T.
Genome Announc,
1(5).
Abstract:
Draft Genome Sequences of Three Newly Identified Species in the Genus Cronobacter, C. helveticus LMG23732T, C. pulveris LMG24059, and C. zurichensis LMG23730T.
Cronobacter helveticus, Cronobacter pulveris, and Cronobacter zurichensis are newly described species in the Cronobacter genus, which is associated with serious infections of neonates. This is the first report of draft genome sequences for these species.
Abstract.
Author URL.
Masood N, Moore K, Farbos A, Hariri S, Block C, Paszkiewicz K, Dickins B, McNally A, Forsythe S (2013). Draft genome sequence of a meningitic isolate of Cronobacter sakazakii clonal complex 4, strain 8399.
Genome Announcements,
1(5).
Abstract:
Draft genome sequence of a meningitic isolate of Cronobacter sakazakii clonal complex 4, strain 8399
The Cronobacter sakazakii clonal lineage defined as clonal complex 4 (CC4), composed of nine sequence types, is associated with severe cases of neonatal meningitis. To date, only closely related C. sakazakii sequence type 4 (ST4) strains have been sequenced. C. sakazakii strain 8399, isolated from a case of neonatal meningitis, was sequenced as the first non-ST4 C. sakazakii strain.
Abstract.
Masood N, Moore K, Farbos A, Hariri S, Paszkiewicz K, Dickins B, McNally A, Forsythe S (2013). Draft genome sequence of the earliest Cronobacter sakazakii sequence type 4 strain, NCIMB 8272.
Genome Announcements,
1(5).
Abstract:
Draft genome sequence of the earliest Cronobacter sakazakii sequence type 4 strain, NCIMB 8272
The Cronobacter sakazakii clonal lineage defined as sequence type 4 (ST4) is associated with severe cases of neonatal meningitis and persistence in powdered infant formula. For genome sequencing of the earliest deposited culture collection strain of Cronobacter sakazakii ST4, we used the strain NCIMB 8272, originally isolated from milk powder in 1950.
Abstract.
Masood N, Moore K, Farbos A, Hariri S, Paszkiewicz K, Dickins B, McNally A, Forsythe S (2013). Draft genome sequences of three newly identified species in the genus Cronobacter, C. helveticus LMG23732<sup>T</sup>, C. pulveris LMG24059, and C. zurichensis LMG23730<sup>T</sup>.
Genome Announcements,
1(5).
Abstract:
Draft genome sequences of three newly identified species in the genus Cronobacter, C. helveticus LMG23732T, C. pulveris LMG24059, and C. zurichensis LMG23730T
Cronobacter helveticus, Cronobacter pulveris, and Cronobacter zurichensis are newly described species in the Cronobacter genus, which is associated with serious infections of neonates. This is the first report of draft genome sequences for these species.
Abstract.
Howard TP, Middelhaufe S, Moore K, Edner C, Kolak DM, Taylor GN, Parker DA, Lee R, Smirnoff N, Aves SJ, et al (2013). Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli.
Proc Natl Acad Sci USA,
110, 7636-7641.
Abstract:
Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli
Biofuels are the most immediate, practical solution for mitigating dependence on fossil hydrocarbons, but current biofuels (alcohols and biodiesels) require significant downstream processing and are not fully compatible with modern, mass-market internal combustion engines. Rather, the ideal biofuels are structurally and chemically identical to the fossil fuels they seek to replace (i.e. aliphatic n- and iso-alkanes and -alkenes of various chain lengths). Here we report on production of such petroleum-replica hydrocarbons in Escherichia coli. The activity of the fatty acid (FA) reductase complex from Photorhabdus luminescens was coupled with aldehyde decarbonylase from Nostoc punctiforme to use free FAs as substrates for alkane biosynthesis. This combination of genes enabled rational alterations to hydrocarbon chain length (Cn) and the production of branched alkanes through upstream genetic and exogenous manipulations of the FA pool. Genetic components for targeted manipulation of the FA pool included expression of a thioesterase from Cinnamomum camphora (camphor) to alter alkane Cn and expression of the branched-chain α-keto acid dehydrogenase complex and β-keto acyl-acyl carrier protein synthase III from Bacillus subtilis to synthesize branched (iso-) alkanes. Rather than simply reconstituting existing metabolic routes to alkane production found in nature, these results demonstrate the ability to design and implement artificial molecular pathways for the production of renewable, industrially relevant fuel molecules.
Abstract.
Author URL.
Brabbs TR, He Z, Hogg K, Kamenski A, Li Y, Paszkiewicz KH, Moore KA, O'Toole P, Graham IA, Jones L, et al (2013). The stochastic silencing phenotype of Arabidopsis morc6 mutants reveals a role in efficient RNA -directed DNA methylation.
Plant Journal,
75(5), 836-846.
Abstract:
The stochastic silencing phenotype of Arabidopsis morc6 mutants reveals a role in efficient RNA -directed DNA methylation
The RNA-directed DNA methylation (RdDM) pathway is of central importance to the initiation and maintenance of transcriptional gene silencing in plants. DNA methylation is directed to target sequences by a mechanism that involves production of small RNAs by RNA polymerase IV and long non-coding RNAs by RNA polymerase V. DNA methylation then leads to recruitment of histone-modifying enzymes, followed by establishment of a silenced chromatin state. Recently MORC6, a member of the microrchidia (MORC) family of adenosine triphosphatases (ATPases), has been shown to be involved in transcriptional gene silencing. However, reports differ regarding whether MORC6 is involved in RdDM itself or acts downstream of DNA methylation to enable formation of higher-order chromatin structure. Here we demonstrate that MORC6 is required for efficient RdDM at some target loci, and, using a GFP reporter system, we found that morc6 mutants show a stochastic silencing phenotype. By using cell sorting to separate silenced and unsilenced cells, we show that release of silencing at this locus is associated with a loss of DNA methylation. Thus our data support a view that MORC6 influences RdDM and that it is not acting downstream of DNA methylation. For some loci, efficient initiation or maintenance of DNA methylation may depend on the ability to form higher-order chromatin structure. © 2013 John Wiley & Sons Ltd.
Abstract.
Brabbs TR, He Z, Hogg K, Kamenski A, Li Y, Paszkiewicz KH, Moore KA, O'Toole P, Graham IA, Jones L, et al (2013). The stochastic silencing phenotype of Arabidopsis morc6 mutants reveals a role in efficient RNA-directed DNA methylation. Plant Journal
2011
Taylor M, Moore K, Murray J, Aves SJ, Price C (2011). Mcm10 interacts with Rad4/Cut5(TopBP1) and its association with origins of DNA replication is dependent on Rad4/Cut5(TopBP1). DNA Repair, 10(11), 1154-1163.
2008
Moore, K. Aves, S.J. (2008). Mcm10 and DNA replication in fission yeast. In Bryant J, Francis D (Eds.) The Eukaryotic Cell Cycle, Taylor & Francis, 45-69.
2003
Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, et al (2003). The genome sequence of Schizosaccharomyces pombe (vol 415, pg 871, 2002).
NATURE,
421(6918), 94-94.
Author URL.
2002
Hart EA, Bryant JA, Moore K, Aves SJ (2002). Fission yeast Cdc23 interactions with DNA replication initiation proteins.
Curr Genet,
41(5), 342-348.
Abstract:
Fission yeast Cdc23 interactions with DNA replication initiation proteins.
Schizosaccharomyces pombe Cdc23 is an essential DNA replication protein, conserved in eukaryotes and functionally homologous with Saccharomyces cerevisiae Dna43 (Mcm10). We sought evidence for interactions between Cdc23 and the MCM2-7 complex, a component of both the pre-replicative complex and the replication fork. Cdc23 shows genetic interactions with four MCM subunits: cdc23-M36 and cdc23-1E2 alleles both show synthetic phenotypes with mcm2 (cdc19-P1) and mcm6 (mis5-268), and cdc23-M36 is synthetically lethal with mcm4 (cdc21-K46) and with mcm5 (nda4-108). The wild-type cdc23 gene on multicopy plasmids can partially suppress temperature-dependent defects in mcm5 (nda4-108). Two-hybrid analysis demonstrates interactions at the protein-protein level between Cdc23 and Mcm4, Mcm5 and Mcm6. Cdc23 also interacts with four subunits of the Schizosaccharomyces pombe origin recognition complex (ORC) in yeast two-hybrid assay: Orc1, Orc2, Orc5 and Orc6. We found no evidence for interaction between Cdc23 and the MCM recruitment factor Cdc18 (the homologue of Saccharomyces cerevisiae Cdc6). Unlike Cdc18, Cdc23 mRNA shows no significant fluctuation in level through the cell cycle. These data suggest that fission yeast Cdc23 is an MCM-associated factor which has a role in the initiation of DNA replication.
Abstract.
Author URL.
Aves SJ, Gwilliam R, Wood V, Xiang Z (2002). The genome sequence of Schizosaccharomyces pombe. Nature, 415(6874), 871-880.
2001
Moore, K. Aves, S.J. (2001). Origins and complexes: the initiation of DNA replication. Journal of Experimental Botany, 52, 193-202.
Hunt C, Moore K, Xiang Z, Hurst SM, McDougall RC, Rajandream MA, Barrell BG, Gwilliam R, Wood V, Lyne MH, et al (2001). Subtelomeric sequence from the right arm of Schizosaccharomyces pombe chromosome I contains seven permease genes.
Yeast,
18(4), 355-361.
Abstract:
Subtelomeric sequence from the right arm of Schizosaccharomyces pombe chromosome I contains seven permease genes.
The sequence has been determined of 80 888 bp of contiguous subtelomeric DNA, including the isp5 gene, from the right arm of chromosome I of Schizosaccharomyces pombe; 27 open reading frames (ORFs) longer than 100 codons are present, giving a density of one gene per 3.0 kb. Seven of the predicted proteins are members of the major facilitator superfamily (MFS) of transport proteins, including four amino acid permease homologues, bringing this family of amino acid permease sequences to 17 in Sz. pombe, and a phylogenetic analysis is presented. Also encoded is an allantoate permease homologue, a sulphate permease homologue and a probable urea active transporter. Predicted non-membrane proteins include a 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase), a class III aminotransferase, serine acetyltransferase, protein-L-isoaspartate O-methyltransferase, alpha-glucosidase, alpha-galactosidase, esterase/lipase, oxidoreductase of the short-chain dehydrogenase/reductase (SDR) family, aldehyde dehydrogenase, formamidase, amidase, flavohaemoprotein, a putative translation initiation inhibitor and a protein with similarity to a filamentous fungal conidiation-specific protein. The remaining six ORFs are likely to encode proteins, either because they have sequence similarity with hypothetical proteins or because they are known to be transcribed. Introns are scarce in the sequenced region: only three ORFs contain introns, with only one having multiple introns. The sequenced region also contains a single Tf1 transposon long terminal repeat (LTR). The sequence is derived from cosmid clones c869, c922 and c1039 and has been submitted to the EMBL database under entries SPAC869 (Accession No. AL132779), SPAC922 (AL133522) and SPAC1039 (AL133521).
Abstract.
Author URL.
2000
Xiang Z, Moore K, Wood V, Rajandream MA, Barrell BG, Skelton J, Churcher CM, Lyne MH, Devlin K, Gwilliam R, et al (2000). Analysis of 114 kb of DNA sequence from fission yeast chromosome 2 immediately centromere-distal to his5.
Yeast,
16(15), 1405-1411.
Abstract:
Analysis of 114 kb of DNA sequence from fission yeast chromosome 2 immediately centromere-distal to his5.
One hundred and fourteen kilobase pairs (kb) of contiguous genomic sequence have been determined immediately distal to the his5 genetic marker located about 0.9 Mb from the centromere on the long arm of Schizosaccharomyces pombe chromosome 2. The sequence is contained in overlapping cosmid clones c16H5, c12D12, c24C6 and c19G7, of which 20 kb are identical to previously reported sequence from clone c21H7. The remaining 93 781 bp of sequence contains 10 known genes (cdc14, cdm1, cps1, gpa1, msh2, pck2, rip1, rps30-2, sad1 and ubl1), 32 open reading frames (ORFs) capable of coding for proteins of at least 100 amino acid residues in length, one 5S rRNA gene, one tRNA(Pro) gene, one lone Tf1-type long terminal repeat (LTR) and one lone Tf2-type LTR. There is a density of one protein-coding gene per 2.2 kb and 22 of the 42 ORFs (52%) incorporate one or more introns. Twenty-one of the novel ORFs show sequence similarities which suggest functions of their products, including a cyclin C, a MADS box transcription factor, mad2-like protein, telomere binding protein, topoisomerase II-associated protein, ATP-dependent DEAH box RNA helicase, G10 protein, ubiquitin-activating e1-like enzyme, nucleoporin, prolyl-tRNA synthetase, peptidylprolyl isomerase, delta-1-pyrroline-5-carboxylate dehydrogenase, protein transport protein, coatomer epsilon, TCP-1 chaperonin, beta-subunit of 6-phosphofructokinase, aminodeoxychorismate lyase, a phosphate transport protein and a thioredoxin.
Abstract.
Author URL.
Xiang Z, Wood V, Rajandream MA, Barrell BG, Moore K, Hunt C, Aves SJ (2000). Current awareness on yeast.
Yeast,
16(11), 1069-1076.
Abstract:
Current awareness on yeast.
In order to keep subscribers up-to-date with the latest developments in their field, this current awareness service is provided by John Wiley & Sons and contains newly-published material on yeasts. Each bibliography is divided into 10 sections. 1 Books, Reviews & Symposia; 2 General; 3 Biochemistry; 4 Biotechnology; 5 Cell Biology; 6 Gene Expression; 7 Genetics; 8 Physiology; 9 Medical Mycology; 10 Recombinant DNA Technology. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted. (5 weeks journals - search completed 31st May 2000)
Abstract.
Author URL.
Xiang Z, Wood V, Rajandream MA, Barrell BG, Moore K, Hunt C, Aves SJ (2000). Identification of a Candida albicans homologue of the PHO85 gene, a negative regulator of the PHO system in Saccharomyces cerevisiae.
Yeast,
16(11), 1045-1051.
Abstract:
Identification of a Candida albicans homologue of the PHO85 gene, a negative regulator of the PHO system in Saccharomyces cerevisiae
In a screen for the protein kinase genes of the human pathogenic yeast Candida albicans, a putative homologue (CaPHO85) of PHO85, a negative regulator of the PHO system of Saccharomyces cerevisiae, which is one of the cyclin-dependent protein kinases (CDKs), was isolated. An open reading frame (ORF) of this gene was identified encoding a predicted protein of 326 amino acids with a calculated molecular weight of 37.6 kDa. The amino acid sequence is highly homologous to S. cerevisiae Pho85 (62% identity) and its Aspergillus nidulans homologue (70% identity), but less homologous to Cdc28 (50% identity) of S. cerevisiae and to its C. albicans homologue CaCdc28 (49% identity), both of which are also CDK. The coding region for the C. albicans gene was interrupted by an intron of 81 nucleotides near the sequence encoding the N-terminal region, similarly to the case of the S. cerevisiae PHO85 gene. Alignment of CaPho85 with various yeast CDKs revealed that most of the domains for ATP-binding and protein kinase activity are conserved among fungal species. Southern blot analysis indicated that CaPHO85 is most likely present as a single copy gene. This gene complemented the pho85 mutation of S. cerevisiae by transformation. Its DDBJ/EMBL/GenBank Accession No. is AB033276. Copyright (C) 2000 John Wiley and Sons, Ltd.
Abstract.
Xiang Z, Wood V, Rajandream MA, Barrell BG, Moore K, Hunt C, Aves SJ (2000). The mating-type region of Schizosaccharomyces pombe h(-S) 972: Sequencing and analysis of 69 kb including the expressed matl locus.
Yeast,
16(11), 1061-1067.
Abstract:
The mating-type region of Schizosaccharomyces pombe h(-S) 972: Sequencing and analysis of 69 kb including the expressed matl locus
The sequence has been determined of 68 897 bp of genomic DNA including the expressed mat1 mating-type locus from Schizosaccharomyces pombe h(-S) strain 972. The DNA sequence, located on the long arm of fission yeast chromosome II and contained in two cosmid clones, was analysed to reveal one autonomously replicating sequence, two retrotransposon long terminal repeats (LTRs), one tRNA(Gly) gene and 33 open reading frames (ORFs), of which 15 contain introns. Nine of these ORFs code for previously described genes (trt1, rpl10, rps21, nif1, sui1 (psu1), matMi, matMc, let1 and rpa4), one of which (trt1) contains 15 introns, the highest number yet recorded in a gene of S. pombe. of the remaining 24 ORFs, sequence similarity suggests that the function of 13 of the encoded proteins may be predicted and these include four mitochondrial proteins, two transport proteins, two signalling molecules, a component of serine palmitolytransferase, a homologue of 3-methyladenine DNA glycosylase, a multifunctional alcohol dehydrogenase, a killer toxin sensitivity factor and an acetyl transferase. Six deduced sequences appear to be related to proteins of unknown function in Saccharomyces cerevisiae or S. pombe and the remaining five are hypothetical proteins. This sequence has been submitted to the EMBL database under the following entries: SPBC23G7 (Accession No. AL035065), SPBC18E5 (AL035077) and SPBC29A3 (part) (AL022299). Copyright (C) 2000 John Wiley and Sons, Ltd.
Abstract.
1999
Munns MS, Moore K, Jossé L, Fitchett PN, Bryant JA (1999). The use of a multiple antigen peptide to detect a minichromosome maintenance protein in pea (Pisum sativum). In (Ed) EBO Experimental Biology Online Annual 1998, 89-95.
1998
Munns MS, Moore K, Jossé L, Fitchett PN, Bryant JA (1998). The use of a multiple antigen peptide to detect a minichromosome maintenance protein in pea (Pisum sativum). Experimental Biology Online, 3(7), 1-5.
1997
Talbot NJ, McCafferty HRK, Ma M, Moore K, Hamer JE (1997). Nitrogen starvation of the rice blast fungus Magnaporthe grisea may act as an environmental cue for disease symptom expression.
PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY,
50(3), 179-195.
Author URL.