Skip to main content

Faculty of Health and Life Sciences

Dr Steven Porter

Dr Steven Porter

Senior Lecturer in Biochemistry


 Geoffrey Pope 403


Geoffrey Pope Building, University of Exeter , Stocker Road, Exeter, EX4 4QD, UK


My research group focuses on bacterial signal transduction and in particular on multikinase-networks, which are two-component signalling networks comprising multiple sensor kinases. In these networks, the sensor kinases work together to detect and integrate signals and to decide upon an appropriate response.  We are interested in mechanisms of signal integration and amplification and particularly on how complex behaviour can be controlled by these sensory circuits built from such simple components. The main focus of my group is on the GacS multikinase network which controls the transition between acute and chronic modes of virulence in Pseudomonas aeruginosa.

I am a member of:

The Microbes and Disease Research Theme

The Biochemistry, Chemical Biology and Structural Biology Research Theme


1998-2002 D.Phil. (Biochemistry), Jesus College, University of Oxford
1994-1998 M.Biochem. (Biochemistry) First class honours. Jesus College, University of Oxford


2015-present Senior Lecturer in Biochemistry, Biosciences, University of Exeter

2009-2015 Lecturer in Biochemistry, School of Biosciences, University of Exeter
2006-2009 Postdoctoral Research Assistant, Oxford Centre for Integrative Systems Biology, University of Oxford
2001-2006 Junior Research Fellowship (BTP Research Fellow), Pembroke College, University of Oxford
2001-2006 Postdoctoral Research Assistant, Department of Biochemistry, University of Oxford

Research group links

Back to top


Research interests

Two-component signalling pathways are employed by bacteria to perceive their environment and to effect appropriate responses. The vast number of processes regulated includes transcription, virulence, antibiotic resistance, development and chemotaxis. The simplest two-component pathways comprise a single sensor histidine kinase (HPK) and its cognate response regulator (RR). Sensory stimuli control the activity of the HPK, which in turn modulates the activity of the RR by phosphorylation. For some processes eg virulence and development, a simple pathway is not sufficient to detect the multitude of different signals that modulate behaviour and instead a sensory network employing several different HPKs and RRs is used. Research in my laboratory is focussed on understanding the mechanisms used by these complex networks to process and integrate sensory data from numerous sources to produce appropriate physiological responses.

Research networks

Prof. Judy Armitage (Oxford Centre for Integrative Systems Biology, University of Oxford)
Dr Alan Brown (School of Biosciences, University of Exeter)
Prof. Caroline Harwood (Department of Microbiology, University of Washington)
Prof. Philip Maini (Oxford Centre for Integrative Systems Biology, University of Oxford)
Dr Antonis Papachristodoulou (Department of Engineering Science, University of Oxford)
Dr Orkun Soyer (School of Engineering, Computing and Mathematics, University of Exeter)
Prof. Dave Stuart (Division of Structural Biology, University of Oxford)
Dr Marcus Tindall (Oxford Centre for Integrative Systems Biology, University of Reading)
Dr George Wadhams (Oxford Centre for Integrative Systems Biology, University of Oxford)

Back to top


Journal articles

Fadel F, Bassim V, Francis V, Porter S, Botzanowski T, Legrand P, Perez M, Bourne Y, Cianferani S, Vincent F, et al (In Press). Insights into the atypical autokinase activity of the Pseudomonas aeruginosa GacS histidine kinase and its interaction with RetS. Structure
Francis VI, Porter SL (In Press). Multikinase Networks: Two-Component Signaling Networks Integrating Multiple Stimuli. Annual Review of Microbiology, 73
Lowry RC, Milner DS, Al-Bayati AMS, Lambert C, Francis VI, Porter SL, Sockett RE (2019). Evolutionary diversification of the RomR protein of the invasive deltaproteobacterium, Bdellovibrio bacteriovorus. Sci Rep, 9(1). Abstract.  Author URL.
Francis V, Waters EM, Finton-James SE, Gori A, Kadioglu A, Brown A, Porter SL (2018). Multiple communication mechanisms between sensor kinases are crucial for virulence in Pseudomonas aeruginosa. Nature Communications, 9, 2219-2219.
Francis VI, Stevenson EC, Porter SL (2017). Two-component systems required for virulence in Pseudomonas aeruginosa. FEMS Microbiology Letters, 364(11). Abstract.
Amin M, Kothamachu VB, Feliu E, Scharf BE, Porter SL, Soyer OS (2014). Phosphate sink containing two-component signaling systems as tunable threshold devices. PLoS Comput Biol, 10(10). Abstract.  Author URL.
Amin M, Porter SL, Soyer OS (2013). Split histidine kinases enable ultrasensitivity and bistability in two-component signaling networks. PLoS Comput Biol, 9(3). Abstract.  Author URL.
Porter SL, Wilkinson DA, Byles ED, Wadhams GH, Taylor S, Saunders NJ, Armitage JP (2011). Genome sequence of Rhodobacter sphaeroides Strain WS8N. J Bacteriol, 193(15), 4027-4028. Abstract.  Author URL.
Porter SL, Wadhams GH, Armitage JP (2011). Signal processing in complex chemotaxis pathways. Nat Rev Microbiol, 9(3), 153-165. Abstract.  Author URL.
Tindall MJ, Porter SL, Maini PK, Armitage JP (2010). Modeling chemotaxis reveals the role of reversed phosphotransfer and a bi-functional kinase-phosphatase. PLoS Comput Biol, 6(8). Abstract.  Author URL.
Scott KA, Porter SL, Bagg EAL, Hamer R, Hill JL, Wilkinson DA, Armitage JP (2010). Specificity of localization and phosphotransfer in the CheA proteins of Rhodobacter sphaeroides. Molecular Microbiology Abstract.
Bell CH, Porter SL, Strawson A, Stuart DI, Armitage JP (2010). Using structural information to change the phosphotransfer specificity of a two-component chemotaxis signalling complex. PLoS Biol, 8(2). Abstract.  Author URL.
Ind AC, Porter SL, Brown MT, Byles ED, de Beyer JA, Godfrey SA, Armitage JP (2009). Inducible-expression plasmid for Rhodobacter sphaeroides and Paracoccus denitrificans. Appl Environ Microbiol, 75(20), 6613-6615. Abstract.  Author URL.
Tindall MJ, Porter SL, Wadhams GH, Maini PK, Armitage JP (2009). Spatiotemporal modelling of CheY complexes in Escherichia coli chemotaxis. Prog Biophys Mol Biol, 100(1-3), 40-46. Abstract.  Author URL.
Porter SL, Roberts MAJ, Manning CS, Armitage JP (2008). A bifunctional kinase-phosphatase in bacterial chemotaxis. Proc Natl Acad Sci U S A, 105(47), 18531-18536. Abstract.  Author URL.
Tindall MJ, Porter SL, Maini PK, Gaglia G, Armitage JP (2008). Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell. Bull Math Biol, 70(6), 1525-1569. Abstract.  Author URL.
Tindall MJ, Maini PK, Porter SL, Armitage JP (2008). Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations. Bull Math Biol, 70(6), 1570-1607. Abstract.  Author URL.
Porter SL, Wadhams GH, Armitage JP (2008). Rhodobacter sphaeroides: complexity in chemotactic signalling. Trends Microbiol, 16(6), 251-260. Abstract.  Author URL.
Porter SL, Wadhams GH, Armitage JP (2007). In vivo and in vitro analysis of the Rhodobacter sphaeroides chemotaxis signaling complexes. Methods Enzymol, 423, 392-413. Abstract.  Author URL.
Slovak PM, Porter SL, Armitage JP (2006). Differential localization of Mre proteins with PBP2 in Rhodobacter sphaeroides. J Bacteriol, 188(5), 1691-1700. Abstract.  Author URL.
Rasmussen AA, Wegener-Feldbrügge S, Porter SL, Armitage JP, Søgaard-Andersen L (2006). Four signalling domains in the hybrid histidine protein kinase RodK of Myxococcus xanthus are required for activity. Mol Microbiol, 60(2), 525-534. Abstract.  Author URL.
Porter SL, Wadhams GH, Martin AC, Byles ED, Lancaster DE, Armitage JP (2006). The CheYs of Rhodobacter sphaeroides. J Biol Chem, 281(43), 32694-32704. Abstract.  Author URL.
Rasmussen AA, Porter SL, Armitage JP, Søgaard-Andersen L (2005). Coupling of multicellular morphogenesis and cellular differentiation by an unusual hybrid histidine protein kinase in Myxococcus xanthus. Mol Microbiol, 56(5), 1358-1372. Abstract.  Author URL.
Porter SL, Armitage JP (2004). Chemotaxis in Rhodobacter sphaeroides requires an atypical histidine protein kinase. J Biol Chem, 279(52), 54573-54580. Abstract.  Author URL.
Porter SL, Armitage JP (2002). Phosphotransfer in Rhodobacter sphaeroides chemotaxis. J Mol Biol, 324(1), 35-45. Abstract.  Author URL.
Porter SL, Warren AV, Martin AC, Armitage JP (2002). The third chemotaxis locus of Rhodobacter sphaeroides is essential for chemotaxis. Mol Microbiol, 46(4), 1081-1094. Abstract.  Author URL.
Wadhams GH, Martin AC, Porter SL, Maddock JR, Mantotta JC, King HM, Armitage JP (2002). TlpC, a novel chemotaxis protein in Rhodobacter sphaeroides, localizes to a discrete region in the cytoplasm. Mol Microbiol, 46(5), 1211-1221. Abstract.  Author URL.
Martin AC, Wadhams GH, Shah DS, Porter SL, Mantotta JC, Craig TJ, Verdult PH, Jones H, Armitage JP (2001). CheR- and CheB-dependent chemosensory adaptation system of Rhodobacter sphaeroides. J Bacteriol, 183(24), 7135-7144. Abstract.  Author URL.
Shah DS, Porter SL, Martin AC, Hamblin PA, Armitage JP (2000). Fine tuning bacterial chemotaxis: analysis of Rhodobacter sphaeroides behaviour under aerobic and anaerobic conditions by mutation of the major chemotaxis operons and cheY genes. EMBO J, 19(17), 4601-4613. Abstract.  Author URL.
Shah DS, Porter SL, Harris DC, Wadhams GH, Hamblin PA, Armitage JP (2000). Identification of a fourth cheY gene in Rhodobacter sphaeroides and interspecies interaction within the bacterial chemotaxis signal transduction pathway. Mol Microbiol, 35(1), 101-112. Abstract.  Author URL.


Brinkman FSL, Winsor GL, Done RE, Filloux A, Francis VI, Goldberg JB, Greenberg EP, Han K, Hancock REW, Haney CH, et al (2021). The Pseudomonas aeruginosa whole genome sequence: a 20th anniversary celebration. In  (Ed) Advances in Microbial Physiology, 25-88. Abstract.

Back to top

External Engagement and Impact

Invited lectures

Sensory transduction in microorganisms. Gordon Research Conference, 2012 Max Planck Institute for Terrestrial Microbiology, 2011

Workshops/Conferences organised

Frontiers of Multidisciplinary Research: Mathematics, Engineering and Biology. Exeter, 2010.

Back to top


Fellow of the Higher Education Academy

Frontiers in Molecular Cell Biology (BIO3077)
Metabolism (BIO2086)
Frontiers in Natural Sciences (NSC2001)
Biochemistry (BIO1332)
Professional skills (BIOM509)



Back to top

Supervision / Group

Postdoctoral researchers

  • Vanessa Francis
  • Emma Stevenson

Postgraduate researchers

  • Vanessa Francis
  • Matt Scurlock
  • Emma Stevenson
  • Ellie Tong


  • Munia Amin (joint with Dr Orkun Soyer)

Back to top

Edit Profile